The End of the Line: Can Ferredoxin and Ferredoxin NADP(H) Oxidoreductase Determine the Fate of Photosynthetic Electrons?

ISSN: 1875-5550 (Online)
ISSN: 1389-2037 (Print)

Volume 18, 12 Issues, 2017

Download PDF Flyer

Current Protein & Peptide Science

This journal supports open access

Aims & ScopeAbstracted/Indexed in

Submit Abstracts Online Submit Manuscripts Online

Ben M. Dunn
Department of Biochemistry and Molecular Biology University of Florida
College of Medicine, P.O. Box 100245, Gainesville
Florida, FL 32610-0245

View Full Editorial Board

Subscribe Purchase Articles Order Reprints

Current: 2.441
5 - Year: 2.705

The End of the Line: Can Ferredoxin and Ferredoxin NADP(H) Oxidoreductase Determine the Fate of Photosynthetic Electrons?

Current Protein & Peptide Science, 15(4): 385-393.

Author(s): Tatjana Goss and Guy Hanke.

Affiliation: Department of Plant Physiology, Faculty of Biology and Chemistry, University of Osnabrück,11 Barbara Strasse, Osnabrueck, DE-49076, Germany.


At the end of the linear photosynthetic electron transfer (PET) chain, the small soluble protein ferredoxin (Fd) transfers electrons to Fd:NADP(H) oxidoreductase (FNR), which can then reduce NADP+ to support C assimilation. In addition to this linear electron flow (LEF), Fd is also thought to mediate electron flow back to the membrane complexes by different cyclic electron flow (CEF) pathways: either antimycin A sensitive, NAD(P)H complex dependent, or through FNR located at the cytochrome b6f complex. Both Fd and FNR are present in higher plant genomes as multiple gene copies, and it is now known that specific Fd iso-proteins can promote CEF. In addition, FNR iso-proteins vary in their ability to dynamically interact with thylakoid membrane complexes, and it has been suggested that this may also play a role in CEF. We will highlight work on the different Fd-isoproteins and FNR-membrane association found in the bundle sheath (BSC) and mesophyll (MC) cell chloroplasts of the C4 plant maize. These two cell types perform predominantly CEF and LEF, and the properties and activities of Fd and FNR in the BSC and MC are therefore specialized for CEF and LEF respectively. A diversity of Fd isoproteins and dynamic FNR location has also been recorded in C3 plants, algae and cyanobacteria. This indicates that the principles learned from the extreme electron transport situations in the BSC and MC of maize might be usefully applied to understanding the dynamic transition between these states in other systems.


Bundle sheath, cyclic electron flow, ferredoxin, FNR, mesophyll.

Download Free Order Reprints Order Eprints Rights and Permissions

Article Details

Volume: 15
Issue Number: 4
First Page: 385
Last Page: 393
Page Count: 9
DOI: 10.2174/1389203715666140327113733

Related Journals

Webmaster Contact: Copyright © 2016 Bentham Science