Impact of microRNAs in Resistance to Chemotherapy and Novel Targeted Agents in Non-Small Cell Lung Cancer

ISSN: 1873-4316 (Online)
ISSN: 1389-2010 (Print)


Volume 15, 12 Issues, 2014


Download PDF Flyer




Current Pharmaceutical Biotechnology

Aims & ScopeAbstracted/Indexed in

Ranking and Category:
  • 112th of 254 in Pharmacology & Pharmacy

Submit Abstracts Online Submit Manuscripts Online

Editor-in-Chief:
Zeno Foldes-Papp
Visiting Professor of Medical Biochemistry
HELIOS Clinical Center of Emergency Medicine
Department for Internal Medicine
Alte-Koelner-Strasse 9
D-51688 Koeln-Wipperfuerth
Germany


View Full Editorial Board

Subscribe Purchase Articles Order Reprints

Current: 2.511
5 - Year: 2.817

Impact of microRNAs in Resistance to Chemotherapy and Novel Targeted Agents in Non-Small Cell Lung Cancer

Author(s): Christian Rolfo, Daniele Fanale, David S. Hong, Apostolia M. Tsimberidou, Sarina A. Piha-Paul, Patrick Pauwels, Jan P. Van Meerbeeck, Stefano Caruso, Viviana Bazan, Giuseppe Cicero, Antonio Russo and Elisa Giovannetti

Affiliation: Department of Medical Oncology, VU University Medical Center, Cancer Center Amsterdam, CCA room 1.42, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands.

Abstract

Despite recent advances in understanding the cancer signaling pathways and in developing new therapeutic strategies, non-small cell lung cancer (NSCLC) shows grim prognosis and high incidence of recurrence. Insufficient disruption of oncogenic signaling and drug resistance are the most common causes of tumor recurrence. Drug resistance, intrinsic or acquired, represents a main obstacle in NSCLC therapeutics by limiting the efficacy both of conventional chemotherapeutic compounds and new targeted agents. Therefore, novel and more innovative approaches are required for treatment of this tumor. MicroRNAs (miRNAs) are a family of small non-coding RNAs that regulate gene expression by sequence-specific targeting of mRNAs causing mRNA degradation or translational repression. Accumulating evidence suggests that impairment of candidate miRNAs may be involved in the acquisition of tumor cell resistance to conventional chemotherapy and novel biological agents by affecting the drug sensitivity of cancer cells. The modulation of these miRNAs, using antagomiRs or miRNA mimics, can restore key gene networks and signaling pathways, and optimize anticancer therapies by inhibition of tumor cell proliferation and increasing the drug sensitivity. Therefore, miRNA-based therapeutics provides an attractive anti-tumor approach for developing new and more effective individualized therapeutic strategies, improving drug efficiency, and for predicting the response to different anticancer drugs. In this review, we present an overview on the role of miRNAs in resistance mechanisms of NSCLC, discussing the main studies on the aberrations in apoptosis, cell cycle and DNA damage repair pathways, as well as in novel drug targets.

Keywords: Chemotherapy, lung cancer, microRNA, oncogenic pathways, resistance, targeted agents.

Download Free Rights and Permissions

  
  



Article Details

Volume: 15
Issue Number: 5
First Page: 475
Last Page: 485
Page Count: 11
DOI: 10.2174/1389201015666140519123219
Advertisement

Related Journals




Webmaster Contact: urooj@benthamscience.org Copyright © 2014 Bentham Science