Pathogenesis of Alzheimer Disease: Role of Oxidative Stress, Amyloid-β Peptides, Systemic Ammonia and Erythrocyte Energy Metabolism

ISSN: 1996-3181 (Online)
ISSN: 1871-5273 (Print)


Volume 13, 10 Issues, 2014


Download PDF Flyer




CNS & Neurological Disorders - Drug Targets

Formerly: Current Drug Targets - CNS & Neurological Disorders

Aims & ScopeAbstracted/Indexed in

Ranking and Category:
  • 96th of 254 in Pharmacology & Pharmacy

Submit Abstracts Online Submit Manuscripts Online

Editor-in-Chief:
Stephen D. Skaper
Department of Pharmaceutical and Pharmacological Sciences
University of Padova
Padova
Italy


View Full Editorial Board

Subscribe Purchase Articles Order Reprints

Current: 2.702
5 - Year: 3.298

Pathogenesis of Alzheimer Disease: Role of Oxidative Stress, Amyloid-β Peptides, Systemic Ammonia and Erythrocyte Energy Metabolism

Author(s): Elena A. Kosenko, Iliya N. Solomadin, Lyudmila A. Tikhonova, V. Prakash Reddy, Gjumrakch Aliev and Yury G. Kaminsky

Affiliation: (Gjumrakch Aliev) GALLY International Biomedical Research Institute Inc., 7733 Louis Pasteur Drive, #328, San Antonio, TX, 78229, USA.

Abstract

Aβ exerts prooxidant or antioxidant effects based on the metal ion concentrations that it sequesters from the cytosol; at low metal ion concentrations, it is an antioxidant, whereas at relatively higher concentration it is a prooxidant. Thus Alzheimer disease (AD) treatment strategies based solely on the amyloid-β clearance should be re-examined in light of the vast accumulating evidence that increased oxidative stress in the human brains is the key causative factor for AD. Accumulating evidence indicates that the reduced brain glucose availability and brain hypoxia, due to the relatively lower concentration of ATP and 2,3-diphosphoglycerate, may be associated with increased concentration of endogenous ammonia, a potential neurotoxin in the AD brains. In this review, we summarize the progress in this area, and present some of our ongoing research activities with regard to brain Amyloid-β, systemic ammonia, erythrocyte energy metabolism and the role of 2,3-diphosphoglycerate in AD pathogenesis.

Keywords: Alzheimer disease, ammonia, amyloid-β, erythrocyte energy metabolism, oxidative stress.

Download Free Order Reprints Order Eprints Rights and Permissions

  
  



Article Details

Volume: 13
Issue Number: 1
First Page: 112
Last Page: 119
Page Count: 8
DOI: 10.2174/18715273113126660130
Advertisement

Related Journals




Webmaster Contact: urooj@benthamscience.org Copyright © 2014 Bentham Science