Salvianolic Acid B Inhibits Atherogenesis of Vascular Cells through Induction of Nrf2-Dependent Heme Oxygenase-1

ISSN: 1875-533X (Online)
ISSN: 0929-8673 (Print)


Volume 21, 38 Issues, 2014


Download PDF Flyer




Current Medicinal Chemistry

Aims & ScopeAbstracted/Indexed in

Ranking and Category:
  • 5th of 59 in Chemistry & Medicinal
  • 41st of 261 in Pharmacology & Pharmacy
  • 80th of 290 in Biochemistry & Molecular Biology

Submit Abstracts Online Submit Manuscripts Online

Editor-in-Chief:
Atta-ur-Rahman, FRS
Honorary Life Fellow
Kings College
University of Cambridge
Cambridge
UK
Email: cmc@benthamscience.org

View Full Editorial Board

Subscribe Purchase Articles Order Reprints

Current: 4.07
5 - Year: 4.471

Salvianolic Acid B Inhibits Atherogenesis of Vascular Cells through Induction of Nrf2-Dependent Heme Oxygenase-1

Author(s): Hyun Jung Lee, MiRan Seo and Eun Jig Lee

Affiliation: Endocrinology, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul120-752, Korea

Abstract

Aims: Salvianolic acid B (Sal B), one of the most active components of Danshen extracts, has beneficial roles in the prevention and treatment of cardiovascular diseases. However, the precise mechanism by which Sal B exerts its effects on vascular cells is unclear. We aimed to elucidate the effects of Sal B on vascular cells and the underlying mechanisms. Methods and Results: Treatment of vascular smooth muscle cells with Sal B effectively inhibited platelet-derived growth factor (PDGF)-induced cell proliferation and migration, and markedly increased heme oxygenase-1 (HO-1) expression. These changes were accompanied by antioxidant effects, including decreases in the generation of reactive oxygen species and the NADP/NADPH ratio. In human umbilical vein endothelial cells, Sal B also strongly induced HO-1 and effectively inhibited tumor necrosis factor-α-induced NF-αB activation. Knockdown of HO-1 expression by siRNA abolished the effects of Sal B in vascular cells and prevented the inhibition of proliferation, migration, and inflammation in HO-1-deficient cells. In ex vivo culture of arterial rings isolated from nuclear factor-E2-related factor 2 (Nrf2)-knockout mice, Sal B did not induce HO-1 expression and not inhibit PDGF-induced neointimal hyperplasia in arteries, suggesting that Nrf2 plays a crucial role in the induction of HO-1 expression. Conclusions: We conclude that Sal B exerts antiatherogenic effects by inhibiting the proliferation, migration, and inflammation of vascular cells through induction of HO-1 via Nrf2 activation


Purchase Online Rights and Permissions

Article Details

Volume: 21
First Page: 1
Last Page: 1
Page Count: 1
DOI: 10.2174/0929867321666140601195940
Advertisement

Related Journals




Webmaster Contact: urooj@benthamscience.org Copyright © 2014 Bentham Science