Peptide-Based Therapeutic Approaches for Treatment of the Polyglutamine Diseases

ISSN: 1875-533X (Online)
ISSN: 0929-8673 (Print)

Volume 22, 38 Issues, 2015

Download PDF Flyer

Current Medicinal Chemistry

Aims & ScopeAbstracted/Indexed in

Ranking and Category:
  • 6th of 59 in Chemistry & Medicinal
  • 47th of 254 in Pharmacology & Pharmacy
  • 81st of 289 in Biochemistry & Molecular Biology

Submit Abstracts Online Submit Manuscripts Online

Atta-ur-Rahman, FRS
Honorary Life Fellow
Kings College
University of Cambridge

View Full Editorial Board

Subscribe Purchase Articles Order Reprints

Current: 3.853
5 - Year: 4.115

Peptide-Based Therapeutic Approaches for Treatment of the Polyglutamine Diseases

Current Medicinal Chemistry, 21(23): 2575-2582.

Author(s): Toshihide Takeuchi, H. Akiko Popiel, Shiroh Futaki, Keiji Wada and Yoshitaka Nagai.

Affiliation: Department of Degenerative Neurological Diseases, National Institute of Neuroscience, National Center of Neurology and Psychiatry, 4-1-1 Ogawa-Higashi, Kodaira, Tokyo 187-8502, Japan.


The polyglutamine (polyQ) diseases including Huntington’s disease and spinocerebellar ataxias are a group of inherited neurodegenerative diseases that are caused by an abnormal expansion of the polyQ stretch in disease-causative proteins. The expanded polyQ stretches are intrinsically unstable and are prone to form insoluble aggregates and inclusion bodies. Recent studies have revealed that the expanded polyQ proteins gain cytotoxicity during the aggregation process, which may possibly cause detrimental effects on a wide range of essential cellular functions leading to eventual neuronal degeneration. Based on the pathogenic mechanism of the polyQ diseases, several therapeutic approaches have been proposed to date. Among them, here we focus on peptide-based approaches that target either aggregate formation of the polyQ proteins or abnormal cellular processes induced by the expanded polyQ proteins. Although both approaches are effective in suppressing cytotoxicity of the abnormal polyQ proteins and the disease phenotypes of animal models, the former approach is more attractive since it targets the most upstream change occurring in the polyQ diseases, and is therefore expected to be effective against various downstream functional abnormalities in a broad range of polyQ diseases. One of the major current problems that must be overcome for development of peptide-based therapies of the polyQ diseases is the issue of brain delivery, which is also discussed in this article. We hope that in the near future effective therapies are developed, and bring hope to many patients suffering from the currently untreatable polyQ diseases.


Neurodegeneration, peptide, polyglutamine diseases, protein aggregation, therapy.

Purchase Online Order Reprints Order Eprints Rights and Permissions

Article Details

Volume: 21
Issue Number: 23
First Page: 2575
Last Page: 2582
Page Count: 8
DOI: 10.2174/0929867321666140217124038

Related Journals

Webmaster Contact: Copyright © 2015 Bentham Science