Homocysteine Level and Mechanisms of Injury in Parkinson's Disease as Related to MTHFR, MTR, and MTHFD1 Genes Polymorphisms and LDopa Treatment

ISSN: 1875-5488 (Online)
ISSN: 1389-2029 (Print)


Volume 15, 6 Issues, 2014


Download PDF Flyer




Current Genomics

Aims & ScopeAbstracted/Indexed in

Ranking and Category:
  • 69th of 164 in Genetics & Heredity
  • 144th of 291 in Biochemistry & Molecular Biology

Submit Abstracts Online Submit Manuscripts Online

Editor-in-Chief:
Christian Néri
Institute of Biology Paris-Seine
CNRS UMR 8256 and UPMC
Paris, 75005
France


View Full Editorial Board

Subscribe Purchase Articles Order Reprints

Current: 2.868
5 - Year: 2.987

Homocysteine Level and Mechanisms of Injury in Parkinson's Disease as Related to MTHFR, MTR, and MTHFD1 Genes Polymorphisms and LDopa Treatment

Author(s): Agata Rozycka, Pawel P. Jagodzinski, Wojciech Kozubski, Margarita Lianeri and Jolanta Dorszewska

Affiliation: Laboratory of Neurobiology, Department of Neurology, Poznan University of Medical Sciences, 49 Przybyszewskiego St. 60-355 Poznan, Poland.

Abstract

An elevated concentration of total homocysteine (tHcy) in plasma and cerebrospinal fluid is considered to be a risk factor for Alzheimer's disease (AD) and Parkinson's disease (PD). Homocysteine (Hcy) levels are influenced by folate concentrations and numerous genetic factors through the folate cycle, however, their role in the pathogenesis of PD remains controversial. Hcy exerts a neurotoxic action and may participate in the mechanisms of neurodegeneration, such as excitotoxicity, oxidative stress, calcium accumulation, and apoptosis. Elevated Hcy levels can lead to prooxidative activity, most probably through direct interaction with N-methyl-D-aspartate (NMDA) receptors and sensitization of dopaminergic neurons to age-related dysfunction and death. Several studies have shown that higher concentration of Hcy in PD is related to long-term administration of levodopa (L-dopa). An elevation of plasma tHcy levels can also reflect deficiencies of cofactors in remethylation of Hcy to methionine (Met) (folates and vitamin B12) and in its transsulfuration to cysteine (Cys) (vitamin B6). It is believed that the increase in the concentration of Hcy in PD can affect genetic polymorphisms of the folate metabolic pathway genes, such as MTHFR (C677T, A1298C and G1793A), MTR (A2756G), and MTHFD1 (G1958A), whose frequencies tend to increase in PD patients, as well as the reduced concentration of B vitamins. In PD, increased levels of Hcy may lead to dementia, depression and progression of the disease.

Keywords: MTHFR, MTR, MTHFD1 polymorphism, Biothiols, PD.

Purchase Online Order Reprints Order Eprints Rights and Permissions

  
  



Article Details

Volume: 14
Issue Number: 8
First Page: 534
Last Page: 542
Page Count: 9
DOI: 10.2174/1389202914666131210210559
Advertisement

Related Journals




Webmaster Contact: urooj@benthamscience.org Copyright © 2014 Bentham Science