Current Development and Review of Dynamic Bayesian Network-based Methods for Inferring Gene Regulatory Networks from Gene Expression Data

ISSN: 2212-392X (Online)
ISSN: 1574-8936 (Print)


Volume 9, 5 Issues, 2014


Download PDF Flyer




Current Bioinformatics

Aims & ScopeAbstracted/Indexed in

Ranking and Category:
  • 52nd of 20 in Mathematical & Computational Biology

Submit Abstracts Online Submit Manuscripts Online

Editor-in-Chief:
Alessandro Giuliani
Istituto Superiore di Sanitá (Italian NIH) Environment and Health Dept
Roma
Italy


View Full Editorial Board

Subscribe Purchase Articles Order Reprints

Current: 1.726
5 - Year: 1.577

Current Development and Review of Dynamic Bayesian Network-based Methods for Inferring Gene Regulatory Networks from Gene Expression Data

Author(s): Lian En Chai, Mohd Saberi Mohamad, Safaai Deris, Chuii Khim Chong, Yee Wen Choon and Sigeru Omatu

Affiliation: Artificial Intelligence and Bioinformatics Research Group, Faculty of Computing, Universiti Teknologi Malaysia, Skudai, 81310 Johor, Malaysia.

Abstract

In the post-genome era, designing and conducting novel experiments have become increasingly common for modern researchers. However, the major challenge faced by researchers is surprisingly not the complexity in designing new experiments or obtaining the data generated from the experiments, butinstead it is the huge amount of data to be processed and analysed in the quest to produce meaningful information and knowledge. Gene regulatory network (GRN) inference from gene expression data is one of the common examples of such challenge. Over the years, GRN inference has witnessed a number of transitions, and an increasing amount of new computational and statistical-based methods have been applied to automate the procedure. One of the widely used approaches for GRN inference is the dynamic Bayesian network (DBN). In this review paper, we first discuss the evolution of molecular biology research from reductionism to holism. This is followed by a brief insight on various computational and statistical methods used in GRN inference before focusing on reviewing the current development and applications of DBN-based methods.


Purchase Online Rights and Permissions

  
  



Article Details

Volume: 9
First Page: 1
Last Page: 1
Page Count: 1
DOI: 10.2174/1574893609666140421210333
Advertisement

Related Journals




Webmaster Contact: urooj@benthamscience.org Copyright © 2014 Bentham Science