Fractal Analysis of the Bone Marrow in Myelodysplastic Syndromes

ISSN: 2212-392X (Online)
ISSN: 1574-8936 (Print)


Volume 9, 5 Issues, 2014


Download PDF Flyer




Current Bioinformatics

Aims & ScopeAbstracted/Indexed in

Ranking and Category:
  • 20th of 52 in Mathematical & Computational Biology

Submit Abstracts Online Submit Manuscripts Online

Editor-in-Chief:
Alessandro Giuliani
Istituto Superiore di Sanitá (Italian NIH) Environment and Health Dept
Roma
Italy


View Full Editorial Board

Subscribe Purchase Articles Order Reprints

Current: 1.726
5 - Year: 1.577

Fractal Analysis of the Bone Marrow in Myelodysplastic Syndromes

Author(s): Giorgio Bianciardi and Pietro Luzi

Affiliation: Department of Medical Biotechnologies, Anatomia Patologica, Universita degli Studi di Siena, Italy.

Abstract

Basic researchers and clinicians are increasingly aware of the remarkable importance of the fractal approaches in the morphological study of cells and tissues, providing information that can help to understand pathological changes. In our experience, fractal analysis has been able to produce important data on the differential diagnosis in the patient. Here we report new data on the fractal analysis of the bone marrow in myelodysplastic syndromes, a group of hematologic neoplasms characterized by morphological dysplasia, aberrant hematopoiesis, peripheral blood refractory cytopenia, with an increased risk of transformation to acute myeloid leukemia. Ninety cases of Myelodysplastic Syndromes, 20 samples of normal bone marrow, 16 cases of benign hyperplastic bone marrow and 9 cases of acute myeloid leukemia (AML) were studied. In myelodysplastic syndromes, fractal dimension is statistically increased compared with the normal condition, and, moreover, it increases with the severity of the lesion. Statistically, four classes arise. Healthy bone marrow, D = 1.72 ± 0.08, “hyperplasia” and “refractory anemia”, D = 1.79 ± 0.08,” refractory anemia with excess blasts- 1” and “refractory anemia with excess blasts -2”, D = 1.86 ± 0.08 and a fourth group, which represents the most severe condition (HIV-related myelodysplastic syndrome, chronic myelomonocytic leukemia and acute myeloid leukemia), with D = 1.95 ± 0.05, i.e. the complete loss of the diffusion limited aggregation structure that characterizes the normal bone marrow. Fractal analysis appears to be able to add objective information relating to the differential diagnosis in myelodysplastic syndromes.

Keywords: Differential diagnosis, fractal analysis, human pathology, myelodysplastic syndromes.

Purchase Online Order Reprints Order Eprints Rights and Permissions

  
  



Article Details

Volume: 9
Issue Number: 4
First Page: 408
Last Page: 413
Page Count: 6
DOI: 10.2174/1574893608666131217234443
Advertisement

Related Journals




Webmaster Contact: urooj@benthamscience.org Copyright © 2014 Bentham Science