Towards an Experimental and Systems Biology Framework for Cancer Cell Therapeutics

ISSN: 2212-392X (Online)
ISSN: 1574-8936 (Print)


Volume 9, 5 Issues, 2014


Download PDF Flyer




Current Bioinformatics

Aims & ScopeAbstracted/Indexed in

Ranking and Category:
  • 20th of 52 in Mathematical & Computational Biology

Submit Abstracts Online Submit Manuscripts Online

Editor-in-Chief:
Alessandro Giuliani
Istituto Superiore di Sanitá (Italian NIH) Environment and Health Dept
Roma
Italy


View Full Editorial Board

Subscribe Purchase Articles Order Reprints

Current: 1.726
5 - Year: 1.577

Towards an Experimental and Systems Biology Framework for Cancer Cell Therapeutics

Author(s): Petar M. Mitrasinovic


Abstract

Since most molecular studies on death of cells in tissues have been carried out on isolated cell populations due to known difficulties manifested by interactions with surrounding cells, a novel means of investigating general principles governing cellular functions under oxidative stress conditions is needed in order to shed more light on the background of cancer disease. It is believed that relevant signal transmission may be discovered by transition from molecular to modular cell biology. Systems-level kinetic models are thus expected to explain dynamic behavior and go far beyond the static pictures of the topologies of the signaling pathways. The outline of this review is to feature several representative problems, based on combined - experimental and systems biology studies over the last few years, with a particular emphasis both on the elucidation of how cells interpret the same signal stimulation in distinct fashions (cell death vs. cell survival) and on the identification of signaling molecules with therapeutic relevancy. The origin of oscillations in such molecular mechanisms under oxidative stress conditions and the implications of these oscillatory non-linearities for the development of successful therapies are discussed.


Purchase Online Order Reprints Order Eprints Rights and Permissions

  
  



Article Details

Volume: 8
First Page:
Page Count:
DOI: 10.2174/15748936113089990017
Advertisement

Related Journals




Webmaster Contact: urooj@benthamscience.org Copyright © 2014 Bentham Science