Oxaliplatin-Induced Hyperexcitation of Rat Sciatic Nerve Fibers: An Intra-Axonal Study

ISSN: 1875-5992 (Online)
ISSN: 1871-5206 (Print)


Volume 14, 10 Issues, 2014


Download PDF Flyer




Anti-Cancer Agents in Medicinal Chemistry

Formerly: Current Medicinal Chemistry - Anti-Cancer Agents

Aims & ScopeAbstracted/Indexed in

Ranking and Category:
  • 26th of 59 in Chemistry, Medicinal
  • 99th of 197 in Oncology

Submit Abstracts Online Submit Manuscripts Online

Editor-in-Chief:
Michelle Prudhomme
Universite Blaise Pascal - C.N.R.S
Aubiere Cedex
France


View Full Editorial Board

Subscribe Purchase Articles Order Reprints

Current: 2.61

Oxaliplatin-Induced Hyperexcitation of Rat Sciatic Nerve Fibers: An Intra-Axonal Study

Author(s): Alexia Kagiava, Efstratios K. Kosmidis and George Theophilidis


Abstract

Oxaliplatin is an agent that is used extensively in gastrointestinal cancer chemotherapy. The agent’s major dose-limiting toxicity is peripheral neuropathy that can manifest as a chronic or an acute syndrome. Oxaliplatin-induced acute neuropathy is purportedly caused by an alteration of the biophysical properties of voltage-gated sodium channels. However, sodium channel blockers have not been successful at preventing acute neuropathy in the clinical setting. We report intra-axonal recordings from the isolated rat sciatic nerve preparation under the effect of oxaliplatin. The depolarization phase of single action potentials remains intact with a duration of 0.52 ± 0.02 ms (n=68) before and 0.55 ± 0.01 ms (n=68) after 1-5 h of exposure to 150 ?m oxaliplatin (unpaired t-test, P>0.05) whereas there is a significant broadening of the repolarization phase (2.16 ± 0.10 ms, n=68, before and 5.90 ± 0.32 ms after, n=68, unpaired t-test, P<0.05). Apart from changes in spike shape, oxaliplatin also had drastic concentration- and time-dependent effects on the firing responses of fibers to short stimuli. In the intra-axonal recordings, three groups of firing patterns were indentified. The first group shows bursting (internal frequency 90 - 130 Hz, n=88), the second shows a characteristic plateau (at -19.27±2.84 mV, n=31, with durations ranging from 45 – 140 ms depending on the exposure time), and the third combines a plateau and a bursting period. Our results implicate the voltage-gated potassium channels as additional oxaliplatin targets, opening up new perspectives for the pharmacological prevention of peripheral neuropathy.


Purchase Online Rights and Permissions

Article Details

Volume: 13
First Page: 1
Last Page: 1
Page Count: 1
DOI: 10.2174/1871520613666131125125745
Advertisement


Webmaster Contact: urooj@benthamscience.org Copyright © 2014 Bentham Science