Targeted therapy with radiopharmaceuticals labeled with beta-emitting radionuclides is a rapidly growing nuclear medicine clinical specialty exemplified by the great progress attained over the last decade in the use of radiolabeled peptides for treatment of receptor expressing tumors, most notably for therapy of somatostatin-expressing solid tumors. Only a relatively limited number of beta-emitting radioisotopes are readily available for such applications, and reactor-produced lutetium-177 (177Lu) has emerged as a key player in this field, because of its attractive radionuclidic properties ($T_{1/2}$ 6.7 days; $E_{\text{max} \beta^-}$ 0.498 MeV; γ_{prim} 208 keV, 11%). In addition, relatively high specific activity (SA) 177Lu is available via both “direct” (>25 Ci/mg) irradiation of enriched 176Lu or “indirect” production from 176Yb (> 90 Ci/mg). Clinical applications of 177Lu have focused not only on strategies for targeting tumors, but also for therapeutic treatment of chronic disease such as arthritis (synovectomy) and for treatment of metastatic bone pain (palliation). In this special issue, the articles will cover the production of 177Lu, preparation of a variety of radiopharmaceutical agents and the principle clinical applications of this important therapeutic radionuclide.

Introduction: Evolving Important Role for use of 177Lu for Therapeutic Nuclear Medicine

Chapters

Issues Associated with the Production and Availability of Lutetium-177
- Reactor Production of 177Lu: Unique experience for preparation of high specific activity 177Lu
- No-carrier added 177Lu by irradiation of enriched ytterbium-176

The Development of Targeted 177Lu-Labeled Radiopharmaceuticals
- Radiochemistry and bifunctional chelating agents for binding 177Lu
- Therapy of bone metastasis in dogs using 177Lu-EDTMP
- The influence of conjugation on *in vitro* stability and specificity of 177Lu-DOTA-Rituximab
- Theranostic applications of 177Lu radiopharmaceuticals

Preclinical and Clinical Evaluation of 177Lu Agents for Therapeutic Applications in Nuclear Medicine and Oncology
- Strategies and experience for treatment of SST-expressing tumors with 177Lu-labeled peptides
- Tumor-targeted 177Lu-labeled peptides for cancer therapy - Evolution of Lutathera® for treating neuroendocrine tumors
- Treatment of prostate cancer with 177Lu-J591 anti prostate membrane specific MoAb
- Lutetium-177 labelled bombesin peptides for radionuclide therapy
- 177Lu-rituximab: Development and clinical studies for the treatment of Non-Hodgkin’s lymphoma
- Clinical trials with 177Lu-labeled agents for cancer therapy and bone pain palliation
- Bone pain palliation using 177Lu-EDTMP: Early clinical experience
- Radiation dosimetry aspects of 177Lu

Technical Notes/Short Communications
- Estimation of specific activity of by HPLC method
- Estimation of specific activity by saturation analysis
- Lutetium-177m: Co-production, dosimetry and waste management
Special Issue for CURRENT RADIOPHARMACEUTICALS

LUTETIUM-177 LABELED THERAPEUTICS: EMERGING IMPORTANCE FOR CANCER TREATMENT AND THERAPY OF CHRONIC DISEASE

Guest Editors:

F. F. (Russ) Knapp, Jr., Ph.D.
Emeritus, Manager, Medical Radioisotope Program
ORNL Corporate Fellow
Isotope Development Group, Nuclear Security and Isotope Technology Division
Oak Ridge National Laboratory (ORNL), P. O. Box 2008, 1 Bethel Valley Road
Oak Ridge, TN, 37831-6229, USA
Tel. (865) 574-6229; FAX (865) 574-6226; E-mail <knappffjr@ornl.gov>

Prof. M. R. A. Pillai, Ph.D, D.Sc.
Retired, Head, Radiopharmaceuticals Division Bhabha Atomic Research Centre (BARC) & Professor Homi Bhabha National Institute (HBNI)
Mumbai 400 085, India
Tel. 0091-815 707 8178; E-mail <pillai.m.r.a@gmail.com>

Dr. Russ Knapp is internationally recognized for the development of diagnostic and therapeutic radiopharmaceuticals and their introduction into clinical trials and directed the Nuclear Medicine Program at ORNL from 1977-2012. He completed his Ph.D. at the St. Louis University School of Medicine, and conducted post-doctoral research at the University of Liverpool and Rice University. Editorial Board appointments have included the Journal of Nuclear Medicine, European Journal of Nuclear Medicine, Applied Radiation and Isotopes, World Journal of Nuclear Medicine and Current Molecular Imaging. He has authored over 400 peer-reviewed journal articles, book chapters and Proceedings. In 1991-1992, he conducted research at the Clinic for Nuclear Medicine, in Bonn, Germany, as a Fellow of the Alexander von Humboldt Foundation. He is recognized for his translational clinical introduction of iodine-123-BMIPP for cardiac imaging, and rhenium-188 for the trans-arterial inhibition of arterial restenosis after angioplasty, for the treatment of bone pain palliation and a variety of other targeted therapy applications.

Prof. M. R. A. Pillai, Ph.D, D.Sc. retired as Head, Radiopharmaceuticals Division, Bhabha Atomic
Research Centre (BARC) in 2013. He worked at the University of Missouri-Columbia as postdoctoral research associate (1987–1989) and as visiting professor (1994). He served the IAEA (2003–2010) as a Technical Officer (2003-2010), in which capacity he directed projects on isotopes and radiopharmaceuticals involving 40 countries as well published 14 IAEA documents. He is an Associate Editor of Cancer Biotherapy and Radiopharmaceuticals and is a member of the Editorial Boards of Current Medicinal Chemistry, Current Radiopharmaceuticals and the American Journal of Nuclear Medicine and Molecular Imaging. He has authored three books, 140 papers including 15 review articles, and holds two US patents.