Generic placeholder image

Current Alzheimer Research

Editor-in-Chief

ISSN (Print): 1567-2050
ISSN (Online): 1875-5828

Review Article

Research Progress of Mitophagy in Alzheimer's Disease

Author(s): Jinglin Yao, Bohong Kan*, Zhengjia Dong and Zhenyu Tang

Volume 20, Issue 12, 2023

Published on: 12 March, 2024

Page: [827 - 844] Pages: 18

DOI: 10.2174/0115672050300063240305074310

Abstract

The prevalence of Alzheimer's disease (AD) is increasing as the elderly population, which hurts elderly people's cognition and capacity for self-care. The process of mitophagy involves the selective clearance of ageing and impaired mitochondria, which is required to preserve intracellular homeostasis and energy metabolism. Currently, it has been discovered that mitophagy abnormalities are intimately linked to the beginning and progression of AD. This article discusses the mechanism of mitophagy, abnormal mitophagy, and therapeutic effects in AD. The purpose is to offer fresh perspectives on the causes and remedies of AD.

Keywords: Alzheimer's disease (AD), mitochondrial damage, mitophagy, PINK1, parkin, homeostasis.

[1]
Knopman, D.S.; Amieva, H.; Petersen, R.C.; Chételat, G.; Holtzman, D.M.; Hyman, B.T.; Nixon, R.A.; Jones, D.T. Alzheimer disease. Nat. Rev. Dis. Primers, 2021, 7(1), 33.
[http://dx.doi.org/10.1038/s41572-021-00269-y] [PMID: 33986301]
[2]
Liu, W.; Gauthier, S. Alzheimer’s disease: Current status and perspective. Sci. Bull., 2022, 67(24), 2494-2497.
[http://dx.doi.org/10.1016/j.scib.2022.12.006]
[3]
Jia, L.; Du, Y.; Chu, L.; Zhang, Z.; Li, F.; Lyu, D.; Li, Y.; Li, Y.; Zhu, M.; Jiao, H.; Song, Y.; Shi, Y.; Zhang, H.; Gong, M.; Wei, C.; Tang, Y.; Fang, B.; Guo, D.; Wang, F.; Zhou, A.; Chu, C.; Zuo, X.; Yu, Y.; Yuan, Q.; Wang, W.; Li, F.; Shi, S.; Yang, H.; Zhou, C.; Liao, Z.; Lv, Y.; Li, Y.; Kan, M.; Zhao, H.; Wang, S.; Yang, S.; Li, H.; Liu, Z.; Wang, Q.; Qin, W.; Jia, J.; Quan, M.; Wang, Y.; Li, W.; Cao, S.; Xu, L.; Han, Y.; Liang, J.; Qiao, Y.; Qin, Q.; Qiu, Q. Prevalence, risk factors, and management of dementia and mild cognitive impairment in adults aged 60 years or older in China: A cross-sectional study. Lancet Public Health, 2020, 5(12), e661-e671.
[http://dx.doi.org/10.1016/S2468-2667(20)30185-7] [PMID: 33271079]
[4]
2023 alzheimer’s disease facts and figures. Alzheimers Dement., 2023, 19(4), 1598-1695.
[http://dx.doi.org/10.1002/alz.13016] [PMID: 36918389]
[5]
Jia, J.; Wei, C.; Chen, S.; Li, F.; Tang, Y.; Qin, W.; Zhao, L.; Jin, H.; Xu, H.; Wang, F.; Zhou, A.; Zuo, X.; Wu, L.; Han, Y.; Han, Y.; Huang, L.; Wang, Q.; Li, D.; Chu, C.; Shi, L.; Gong, M.; Du, Y.; Zhang, J.; Zhang, J.; Zhou, C.; Lv, J.; Lv, Y.; Xie, H.; Ji, Y.; Li, F.; Yu, E.; Luo, B.; Wang, Y.; Yang, S.; Qu, Q.; Guo, Q.; Liang, F.; Zhang, J.; Tan, L.; Shen, L.; Zhang, K.; Zhang, J.; Peng, D.; Tang, M.; Lv, P.; Fang, B.; Chu, L.; Jia, L.; Gauthier, S. The cost of alzheimer’s disease in China and re-estimation of costs worldwide. Alzheimers Dement., 2018, 14(4), 483-491.
[http://dx.doi.org/10.1016/j.jalz.2017.12.006] [PMID: 29433981]
[6]
Seshadri, S.; Fitzpatrick, A.L.; Ikram, M.A.; DeStefano, A.L.; Gudnason, V.; Boada, M.; Bis, J.C.; Smith, A.V.; Carassquillo, M.M.; Lambert, J.C.; Harold, D.; Schrijvers, E.M.; Ramirez-Lorca, R.; Debette, S.; Longstreth, W.T., Jr; Janssens, A.C.; Pankratz, V.S.; Dartigues, J.F.; Hollingworth, P.; Aspelund, T.; Hernandez, I.; Beiser, A.; Kuller, L.H.; Koudstaal, P.J.; Dickson, D.W.; Tzourio, C.; Abraham, R.; Antunez, C.; Du, Y.; Rotter, J.I.; Aulchenko, Y.S.; Harris, T.B.; Petersen, R.C.; Berr, C.; Owen, M.J.; Lopez-Arrieta, J.; Varadarajan, B.N.; Becker, J.T.; Rivadeneira, F.; Nalls, M.A.; Graff-Radford, N.R.; Campion, D.; Auerbach, S.; Rice, K.; Hofman, A.; Jonsson, P.V.; Schmidt, H.; Lathrop, M.; Mosley, T.H.; Au, R.; Psaty, B.M.; Uitterlinden, A.G.; Farrer, L.A.; Lumley, T.; Ruiz, A.; Williams, J.; Amouyel, P.; Younkin, S.G.; Wolf, P.A.; Launer, L.J.; Lopez, O.L.; van Duijn, C.M.; Breteler, M.M. Genome-wide analysis of genetic loci associated with alzheimer disease. JAMA, 2010, 303(18), 1832-1840.
[http://dx.doi.org/10.1001/jama.2010.574] [PMID: 20460622]
[7]
Gao, Y.; Ren, R.J.; Zhong, Z.L.; Dammer, E.; Zhao, Q.H.; Shan, S.; Zhou, Z.; Li, X.; Zhang, Y.Q.; Cui, H.L.; Hu, Y.B.; Chen, S.D.; Chen, J.J.; Guo, Q.H.; Wang, G. Mutation profile of APP, PSEN1, and PSEN2 in Chinese familial alzheimer’s disease. Neurobiol. Aging, 2019, 77, 154-157.
[http://dx.doi.org/10.1016/j.neurobiolaging.2019.01.018] [PMID: 30822634]
[8]
Serrano-Pozo, A.; Das, S.; Hyman, B.T. APOE and alzheimer’s disease: Advances in genetics, pathophysiology, and therapeutic approaches. Lancet Neurol., 2021, 20(1), 68-80.
[http://dx.doi.org/10.1016/S1474-4422(20)30412-9] [PMID: 33340485]
[9]
Gallardo, G.; Holtzman, D.M. Amyloid-β and tau at the crossroads of alzheimer’s disease. Adv. Exp. Med. Biol., 2019, 1184, 187-203.
[http://dx.doi.org/10.1007/978-981-32-9358-8_16] [PMID: 32096039]
[10]
Jia, J.P.; Wang, S.H. Pathogenesis and therapeutic progress of alzheimer’s disease. J. Apoplexy Nerv. Dis., 2023, 40(5), 387-390.
[http://dx.doi.org/10.19845/j.cnki.zfysjjbzz.2023.0092]
[11]
Mary, A.; Eysert, F.; Checler, F.; Chami, M. Mitophagy in alzheimer’s disease: Molecular defects and therapeutic approaches. Mol. Psychiatry, 2023, 28(1), 202-216.
[http://dx.doi.org/10.1038/s41380-022-01631-6] [PMID: 35665766]
[12]
Hou, X.; Watzlawik, J.O.; Cook, C.; Liu, C.C.; Kang, S.S.; Lin, W.L.; DeTure, M.; Heckman, M.G.; Diehl, N.N.; Al-Shaikh, F.S.H.; Walton, R.L.; Ross, O.A.; Melrose, H.L.; Ertekin-Taner, N.; Bu, G.; Petrucelli, L.; Fryer, J.D.; Murray, M.E.; Dickson, D.W.; Fiesel, F.C.; Springer, W. Mitophagy alterations in alzheimer’s disease are associated with granulovacuolar degeneration and early tau pathology. Alzheimers Dement., 2021, 17(3), 417-430.
[http://dx.doi.org/10.1002/alz.12198] [PMID: 33090691]
[13]
Harrington, J.S.; Ryter, S.W.; Plataki, M.; Price, D.R.; Choi, A.M.K. Mitochondria in health, disease, and aging. Physiol. Rev., 2023, 103(4), 2349-2422.
[http://dx.doi.org/10.1152/physrev.00058.2021] [PMID: 37021870]
[14]
Fecher, C.; Trovò, L.; Müller, S.A.; Snaidero, N.; Wettmarshausen, J.; Heink, S.; Ortiz, O.; Wagner, I.; Kühn, R.; Hartmann, J.; Karl, R.M.; Konnerth, A.; Korn, T.; Wurst, W.; Merkler, D.; Lichtenthaler, S.F.; Perocchi, F.; Misgeld, T. Cell-type-specific profiling of brain mitochondria reveals functional and molecular diversity. Nat. Neurosci., 2019, 22(10), 1731-1742.
[http://dx.doi.org/10.1038/s41593-019-0479-z] [PMID: 31501572]
[15]
Pradeepkiran, J.A.; Reddy, P.H. Defective mitophagy in alzheimer’s disease. Ageing Res. Rev., 2020, 64, 101191.
[http://dx.doi.org/10.1016/j.arr.2020.101191] [PMID: 33022416]
[16]
Lemasters, J.J. Selective mitochondrial autophagy, or mitophagy, as a targeted defense against oxidative stress, mitochondrial dysfunction, and aging. Rejuvenation Res., 2005, 8(1), 3-5.
[http://dx.doi.org/10.1089/rej.2005.8.3] [PMID: 15798367]
[17]
Cen, X.; Zhang, M.; Zhou, M.; Ye, L.; Xia, H. Mitophagy regulates neurodegenerative diseases. Cells, 2021, 10(8), 1876.
[http://dx.doi.org/10.3390/cells10081876] [PMID: 34440645]
[18]
Cunnane, S.C.; Trushina, E.; Morland, C.; Prigione, A.; Casadesus, G.; Andrews, Z.B.; Beal, M.F.; Bergersen, L.H.; Brinton, R.D.; de la Monte, S.; Eckert, A.; Harvey, J.; Jeggo, R.; Jhamandas, J.H.; Kann, O.; la Cour, C.M.; Martin, W.F.; Mithieux, G.; Moreira, P.I.; Murphy, M.P.; Nave, K.A.; Nuriel, T.; Oliet, S.H.R.; Saudou, F.; Mattson, M.P.; Swerdlow, R.H.; Millan, M.J. Brain energy rescue: An emerging therapeutic concept for neurodegenerative disorders of ageing. Nat. Rev. Drug Discov., 2020, 19(9), 609-633.
[http://dx.doi.org/10.1038/s41573-020-0072-x] [PMID: 32709961]
[19]
Eiyama, A.; Okamoto, K. PINK1/Parkin-mediated mitophagy in mammalian cells. Curr. Opin. Cell Biol., 2015, 33, 95-101.
[http://dx.doi.org/10.1016/j.ceb.2015.01.002] [PMID: 25697963]
[20]
Deas, E.; Plun-Favreau, H.; Gandhi, S.; Desmond, H.; Kjaer, S.; Loh, S.H.Y.; Renton, A.E.M.; Harvey, R.J.; Whitworth, A.J.; Martins, L.M.; Abramov, A.Y.; Wood, N.W. PINK1 cleavage at position A103 by the mitochondrial protease PARL. Hum. Mol. Genet., 2011, 20(5), 867-879.
[http://dx.doi.org/10.1093/hmg/ddq526] [PMID: 21138942]
[21]
Kondapalli, C.; Kazlauskaite, A.; Zhang, N.; Woodroof, H.I.; Campbell, D.G.; Gourlay, R.; Burchell, L.; Walden, H.; Macartney, T.J.; Deak, M.; Knebel, A.; Alessi, D.R.; Muqit, M.M.K. PINK1 is activated by mitochondrial membrane potential depolarization and stimulates Parkin E3 ligase activity by phosphorylating Serine 65. Open Biol., 2012, 2(5), 120080.
[http://dx.doi.org/10.1098/rsob.120080] [PMID: 22724072]
[22]
Gegg, M.E.; Cooper, J.M.; Chau, K.Y.; Rojo, M.; Schapira, A.H.V.; Taanman, J.W. Mitofusin 1 and mitofusin 2 are ubiquitinated in a PINK1/parkin-dependent manner upon induction of mitophagy. Hum. Mol. Genet., 2010, 19(24), 4861-4870.
[http://dx.doi.org/10.1093/hmg/ddq419] [PMID: 20871098]
[23]
Geisler, S.; Holmström, K.M.; Skujat, D.; Fiesel, F.C.; Rothfuss, O.C.; Kahle, P.J.; Springer, W. PINK1/Parkin-mediated mitophagy is dependent on VDAC1 and p62/SQSTM1. Nat. Cell Biol., 2010, 12(2), 119-131.
[http://dx.doi.org/10.1038/ncb2012] [PMID: 20098416]
[24]
Kumar, A.; Aguirre, J.D.; Condos, T.E.C.; Martinez-Torres, R.J.; Chaugule, V.K.; Toth, R.; Sundaramoorthy, R.; Mercier, P.; Knebel, A.; Spratt, D.E.; Barber, K.R.; Shaw, G.S.; Walden, H. Disruption of the autoinhibited state primes the E3 ligase parkin for activation and catalysis. EMBO J., 2015, 34(20), 2506-2521.
[http://dx.doi.org/10.15252/embj.201592337] [PMID: 26254304]
[25]
Nguyen, T.N.; Padman, B.S.; Lazarou, M. Deciphering the molecular signals of PINK1/Parkin mitophagy. Trends Cell Biol., 2016, 26(10), 733-744.
[http://dx.doi.org/10.1016/j.tcb.2016.05.008] [PMID: 27291334]
[26]
Richter, B.; Sliter, D.A.; Herhaus, L.; Stolz, A.; Wang, C.; Beli, P.; Zaffagnini, G.; Wild, P.; Martens, S.; Wagner, S.A.; Youle, R.J.; Dikic, I. Phosphorylation of OPTN by TBK1 enhances its binding to Ub chains and promotes selective autophagy of damaged mitochondria. Proc. Natl. Acad. Sci. USA, 2016, 113(15), 4039-4044.
[http://dx.doi.org/10.1073/pnas.1523926113] [PMID: 27035970]
[27]
Heo, J.M.; Ordureau, A.; Paulo, J.A.; Rinehart, J.; Harper, J.W. The PINK1-PARKIN mitochondrial ubiquitylation pathway drives a program of OPTN/NDP52 recruitment and TBK1 activation to promote mitophagy. Mol. Cell, 2015, 60(1), 7-20.
[http://dx.doi.org/10.1016/j.molcel.2015.08.016] [PMID: 26365381]
[28]
Wong, Y.C.; Holzbaur, E.L.F. Optineurin is an autophagy receptor for damaged mitochondria in parkin-mediated mitophagy that is disrupted by an ALS-linked mutation. Proc. Natl. Acad. Sci. USA, 2014, 111(42), E4439-E4448.
[http://dx.doi.org/10.1073/pnas.1405752111] [PMID: 25294927]
[29]
Kirkin, V.; Lamark, T.; Johansen, T.; Dikic, I. NBR1 co-operates with p62 in selective autophagy of ubiquitinated targets. Autophagy, 2009, 5(5), 732-733.
[http://dx.doi.org/10.4161/auto.5.5.8566] [PMID: 19398892]
[30]
Choubey, V.; Zeb, A.; Kaasik, A. Molecular mechanisms and regulation of mammalian mitophagy. Cells, 2021, 11(1), 38.
[http://dx.doi.org/10.3390/cells11010038] [PMID: 35011599]
[31]
Wang, S.; Long, H.; Hou, L.; Feng, B.; Ma, Z.; Wu, Y.; Zeng, Y.; Cai, J.; Zhang, D.; Zhao, G. The mitophagy pathway and its implications in human diseases. Signal Transduct. Target. Ther., 2023, 8(1), 304.
[http://dx.doi.org/10.1038/s41392-023-01503-7] [PMID: 37582956]
[32]
Villa, E.; Proïcs, E.; Rubio-Patiño, C.; Obba, S.; Zunino, B.; Bossowski, J.P.; Rozier, R.M.; Chiche, J.; Mondragón, L.; Riley, J.S.; Marchetti, S.; Verhoeyen, E.; Tait, S.W.G.; Ricci, J.E. Parkin-independent mitophagy controls chemotherapeutic response in cancer cells. Cell Rep., 2017, 20(12), 2846-2859.
[http://dx.doi.org/10.1016/j.celrep.2017.08.087] [PMID: 28930681]
[33]
Szargel, R.; Shani, V.; Abd Elghani, F.; Mekies, L.N.; Liani, E.; Rott, R.; Engelender, S. The PINK1, synphilin-1 and SIAH-1 complex constitutes a novel mitophagy pathway. Hum. Mol. Genet., 2016, 25(16), 3476-3490.
[http://dx.doi.org/10.1093/hmg/ddw189] [PMID: 27334109]
[34]
Yun, J.; Puri, R.; Yang, H.; Lizzio, M.A.; Wu, C.; Sheng, Z.H.; Guo, M. MUL1 acts in parallel to the PINK1/parkin pathway in regulating mitofusin and compensates for loss of PINK1/parkin. eLife, 2014, 3, e01958.
[http://dx.doi.org/10.7554/eLife.01958] [PMID: 24898855]
[35]
Novak, I.; Kirkin, V.; McEwan, D.G.; Zhang, J.; Wild, P.; Rozenknop, A.; Rogov, V.; Löhr, F.; Popovic, D.; Occhipinti, A.; Reichert, A.S.; Terzic, J.; Dötsch, V.; Ney, P.A.; Dikic, I. Nix is a selective autophagy receptor for mitochondrial clearance. EMBO Rep., 2010, 11(1), 45-51.
[http://dx.doi.org/10.1038/embor.2009.256] [PMID: 20010802]
[36]
Shi, R.Y.; Zhu, S.H.; Li, V.; Gibson, S.B.; Xu, X.S.; Kong, J.M. BNIP3 interacting with LC3 triggers excessive mitophagy in delayed neuronal death in stroke. CNS Neurosci. Ther., 2014, 20(12), 1045-1055.
[http://dx.doi.org/10.1111/cns.12325] [PMID: 25230377]
[37]
Jin, X.H.; Lu, S.F.; Bai, M.; Shen, J.D.; Su, Y.C.; Xu, E.P. Research progress in NIX-mediated mitophagy. Chin. J. Pathophysiol., 2022, 38(11), 2086-2092.
[38]
Liu, L.; Feng, D.; Chen, G.; Chen, M.; Zheng, Q.; Song, P.; Ma, Q.; Zhu, C.; Wang, R.; Qi, W.; Huang, L.; Xue, P.; Li, B.; Wang, X.; Jin, H.; Wang, J.; Yang, F.; Liu, P.; Zhu, Y.; Sui, S.; Chen, Q. Mitochondrial outer-membrane protein FUNDC1 mediates hypoxia-induced mitophagy in mammalian cells. Nat. Cell Biol., 2012, 14(2), 177-185.
[http://dx.doi.org/10.1038/ncb2422] [PMID: 22267086]
[39]
Chen, M.; Chen, Z.; Wang, Y.; Tan, Z.; Zhu, C.; Li, Y.; Han, Z.; Chen, L.; Gao, R.; Liu, L.; Chen, Q. Mitophagy receptor FUNDC1 regulates mitochondrial dynamics and mitophagy. Autophagy, 2016, 12(4), 689-702.
[http://dx.doi.org/10.1080/15548627.2016.1151580] [PMID: 27050458]
[40]
Hirai, K.; Aliev, G.; Nunomura, A.; Fujioka, H.; Russell, R.L.; Atwood, C.S.; Johnson, A.B.; Kress, Y.; Vinters, H.V.; Tabaton, M.; Shimohama, S.; Cash, A.D.; Siedlak, S.L.; Harris, P.L.R.; Jones, P.K.; Petersen, R.B.; Perry, G.; Smith, M.A. Mitochondrial abnormalities in alzheimer’s disease. J. Neurosci., 2001, 21(9), 3017-3023.
[http://dx.doi.org/10.1523/JNEUROSCI.21-09-03017.2001] [PMID: 11312286]
[41]
Xie, C.; Zhuang, X.X.; Niu, Z.; Ai, R.; Lautrup, S.; Zheng, S.; Jiang, Y.; Han, R.; Gupta, T.S.; Cao, S.; Lagartos-Donate, M.J.; Cai, C.Z.; Xie, L.M.; Caponio, D.; Wang, W.W.; Schmauck-Medina, T.; Zhang, J.; Wang, H.; Lou, G.; Xiao, X.; Zheng, W.; Palikaras, K.; Yang, G.; Caldwell, K.A.; Caldwell, G.A.; Shen, H.M.; Nilsen, H.; Lu, J.H.; Fang, E.F. Amelioration of alzheimer’s disease pathology by mitophagy inducers identified via machine learning and a cross-species workflow. Nat. Biomed. Eng., 2022, 6(1), 76-93.
[http://dx.doi.org/10.1038/s41551-021-00819-5] [PMID: 34992270]
[42]
Fang, E.F.; Hou, Y.; Palikaras, K.; Adriaanse, B.A.; Kerr, J.S.; Yang, B.; Lautrup, S.; Hasan-Olive, M.M.; Caponio, D.; Dan, X.; Rocktäschel, P.; Croteau, D.L.; Akbari, M.; Greig, N.H.; Fladby, T.; Nilsen, H.; Cader, M.Z.; Mattson, M.P.; Tavernarakis, N.; Bohr, V.A. Mitophagy inhibits amyloid-β and tau pathology and reverses cognitive deficits in models of alzheimer’s disease. Nat. Neurosci., 2019, 22(3), 401-412.
[http://dx.doi.org/10.1038/s41593-018-0332-9] [PMID: 30742114]
[43]
Kerr, J.S.; Adriaanse, B.A.; Greig, N.H.; Mattson, M.P.; Cader, M.Z.; Bohr, V.A.; Fang, E.F. Mitophagy and alzheimer’s disease: Cellular and molecular mechanisms. Trends Neurosci., 2017, 40(3), 151-166.
[http://dx.doi.org/10.1016/j.tins.2017.01.002] [PMID: 28190529]
[44]
Reddy, P.H.; Oliver, D.M.A. Amyloid beta and phosphorylated tau-induced defective autophagy and mitophagy in alzheimer’s disease. Cells, 2019, 8(5), 488.
[http://dx.doi.org/10.3390/cells8050488] [PMID: 31121890]
[45]
Du, H.; Guo, L.; Yan, S.; Sosunov, A.A.; McKhann, G.M.; ShiDu Yan, S. Early deficits in synaptic mitochondria in an alzheimer’s disease mouse model. Proc. Natl. Acad. Sci. USA, 2010, 107(43), 18670-18675.
[http://dx.doi.org/10.1073/pnas.1006586107] [PMID: 20937894]
[46]
Reiss, A.B.; Arain, H.A.; Stecker, M.M.; Siegart, N.M.; Kasselman, L.J. Amyloid toxicity in alzheimer’s disease. Rev. Neurosci., 2018, 29(6), 613-627.
[http://dx.doi.org/10.1515/revneuro-2017-0063] [PMID: 29447116]
[47]
Yao, Y.; Ren, Z.; Yang, R.; Mei, Y.; Dai, Y.; Cheng, Q.; Xu, C.; Xu, X.; Wang, S.; Kim, K.M.; Noh, J.H.; Zhu, J.; Zhao, N.; Liu, Y.U.; Mao, G.; Sima, J. Salidroside reduces neuropathology in alzheimer’s disease models by targeting NRF2/SIRT3 pathway. Cell Biosci., 2022, 12(1), 180.
[http://dx.doi.org/10.1186/s13578-022-00918-z] [PMID: 36333711]
[48]
Tian, Y.H. The Mechanism of Senegenin Alleviating Aβ1-42-induced Neuron Damage: Study on Mitophagy Pathway; Lanzhou University, 2022.
[http://dx.doi.org/10.27204/d.cnki.glzhu.2022.003705]
[49]
Han, Y.; Wang, N.; Kang, J.; Fang, Y. β-Asarone improves learning and memory in Aβ1-42-induced alzheimer’s disease rats by regulating PINK1-Parkin-mediated mitophagy. Metab. Brain Dis., 2020, 35(7), 1109-1117.
[http://dx.doi.org/10.1007/s11011-020-00587-2] [PMID: 32556928]
[50]
Jiang, Y.; Li, H.; Huang, P.; Li, S.; Li, B.; Huo, L.; Zhong, J.; Pan, Z.; Li, Y.; Xia, X. Panax notoginseng saponins protect PC12 cells against Aβ induced injury via promoting parkin-mediated mitophagy. J. Ethnopharmacol., 2022, 285, 114859.
[http://dx.doi.org/10.1016/j.jep.2021.114859] [PMID: 34818573]
[51]
Wang, N.; Yang, J.; Chen, R.; Liu, Y.; Liu, S.; Pan, Y.; Lei, Q.; Wang, Y.; He, L.; Song, Y.; Li, Z. Ginsenoside Rg1 ameliorates alzheimer’s disease pathology via restoring mitophagy. J. Ginseng Res., 2023, 47(3), 448-457.
[http://dx.doi.org/10.1016/j.jgr.2022.12.001] [PMID: 37252274]
[52]
Kopeikina, K.J.; Carlson, G.A.; Pitstick, R.; Ludvigson, A.E.; Peters, A.; Luebke, J.I.; Koffie, R.M.; Frosch, M.P.; Hyman, B.T.; Spires-Jones, T.L. Tau accumulation causes mitochondrial distribution deficits in neurons in a mouse model of tauopathy and in human alzheimer’s disease brain. Am. J. Pathol., 2011, 179(4), 2071-2082.
[http://dx.doi.org/10.1016/j.ajpath.2011.07.004] [PMID: 21854751]
[53]
Corsetti, V.; Florenzano, F.; Atlante, A.; Bobba, A.; Ciotti, M.T.; Natale, F.; Della Valle, F.; Borreca, A.; Manca, A.; Meli, G.; Ferraina, C.; Feligioni, M.; D’Aguanno, S.; Bussani, R.; Ammassari-Teule, M.; Nicolin, V.; Calissano, P.; Amadoro, G. NH2-truncated human tau induces deregulated mitophagy in neurons by aberrant recruitment of Parkin and UCHL-1: Implications in alzheimer’s disease. Hum. Mol. Genet., 2015, 24(11), 3058-3081.
[http://dx.doi.org/10.1093/hmg/ddv059] [PMID: 25687137]
[54]
Martín-Maestro, P.; Gargini, R.; García, E.; Simón, D.; Avila, J.; García-Escudero, V. Mitophagy failure in APP and tau overexpression model of alzheimer’s disease. J. Alzheimers Dis., 2019, 70(2), 525-540.
[http://dx.doi.org/10.3233/JAD-190086] [PMID: 31256128]
[55]
Kshirsagar, S.; Sawant, N.; Morton, H.; Reddy, A.P.; Reddy, P.H. Mitophagy enhancers against phosphorylated Tau-induced mitochondrial and synaptic toxicities in alzheimer disease. Pharmacol. Res., 2021, 174, 105973.
[http://dx.doi.org/10.1016/j.phrs.2021.105973] [PMID: 34763094]
[56]
Cummins, N.; Tweedie, A.; Zuryn, S.; Bertran-Gonzalez, J.; Götz, J. Disease-associated tau impairs mitophagy by inhibiting Parkin translocation to mitochondria. EMBO J., 2019, 38(3), e99360.
[http://dx.doi.org/10.15252/embj.201899360] [PMID: 30538104]
[57]
Manczak, M.; Reddy, P.H. Abnormal interaction of VDAC1 with amyloid beta and phosphorylated tau causes mitochondrial dysfunction in alzheimer’s disease. Hum. Mol. Genet., 2012, 21(23), 5131-5146.
[http://dx.doi.org/10.1093/hmg/dds360] [PMID: 22926141]
[58]
Vijayan, M.; Alvir, R.V.; Alvir, R.V.; Bunquin, L.E.; Pradeepkiran, J.A.; Reddy, P.H. A partial reduction of VDAC1 enhances mitophagy, autophagy, synaptic activities in a transgenic Tau mouse model. Aging Cell, 2022, 21(8), e13663.
[http://dx.doi.org/10.1111/acel.13663] [PMID: 35801276]
[59]
Flammang, B.; Pardossi-Piquard, R.; Sevalle, J.; Debayle, D.; Dabert-Gay, A.S.; Thévenet, A.; Lauritzen, I.; Checler, F. Evidence that the amyloid-β protein precursor intracellular domain, AICD, derives from β-secretase-generated C-terminal fragment. J. Alzheimers Dis., 2012, 30(1), 145-153.
[http://dx.doi.org/10.3233/JAD-2012-112186] [PMID: 22406447]
[60]
Wang, B.J.; Her, G.M.; Hu, M.K.; Chen, Y.W.; Tung, Y.T.; Wu, P.Y.; Hsu, W.M.; Lee, H.; Jin, L.W.; Hwang, S.P.L.; Chen, R.P.Y.; Huang, C.J.; Liao, Y.F. ErbB2 regulates autophagic flux to modulate the proteostasis of APP-CTFs in alzheimer’s disease. Proc. Natl. Acad. Sci. USA, 2017, 114(15), E3129-E3138.
[http://dx.doi.org/10.1073/pnas.1618804114] [PMID: 28351972]
[61]
Vaillant-Beuchot, L.; Mary, A.; Pardossi-Piquard, R.; Bourgeois, A.; Lauritzen, I.; Eysert, F.; Kinoshita, P.F.; Cazareth, J.; Badot, C.; Fragaki, K.; Bussiere, R.; Martin, C.; Mary, R.; Bauer, C.; Pagnotta, S.; Paquis-Flucklinger, V.; Buée-Scherrer, V.; Buée, L.; Lacas-Gervais, S.; Checler, F.; Chami, M. Accumulation of amyloid precursor protein C-terminal fragments triggers mitochondrial structure, function, and mitophagy defects in alzheimer’s disease models and human brains. Acta Neuropathol., 2021, 141(1), 39-65.
[http://dx.doi.org/10.1007/s00401-020-02234-7] [PMID: 33079262]
[62]
Reddy, P.H.; Yin, X.; Manczak, M.; Kumar, S.; Pradeepkiran, J.A.; Vijayan, M.; Reddy, A.P. Mutant APP and amyloid beta-induced defective autophagy, mitophagy, mitochondrial structural and functional changes and synaptic damage in hippocampal neurons from alzheimer’s disease. Hum. Mol. Genet., 2018, 27(14), 2502-2516.
[http://dx.doi.org/10.1093/hmg/ddy154] [PMID: 29701781]
[63]
Wang, X.; Su, B.; Lee, H.; Li, X.; Perry, G.; Smith, M.A.; Zhu, X. Impaired balance of mitochondrial fission and fusion in alzheimer’s disease. J. Neurosci., 2009, 29(28), 9090-9103.
[http://dx.doi.org/10.1523/JNEUROSCI.1357-09.2009] [PMID: 19605646]
[64]
Medala, V.K.; Gollapelli, B.; Dewanjee, S.; Ogunmokun, G.; Kandimalla, R.; Vallamkondu, J. Mitochondrial dysfunction, mitophagy, and role of dynamin-related protein 1 in alzheimer’s disease. J. Neurosci. Res., 2021, 99(4), 1120-1135.
[http://dx.doi.org/10.1002/jnr.24781] [PMID: 33465841]
[65]
Kandimalla, R.; Manczak, M.; Pradeepkiran, J.A.; Morton, H.; Reddy, P.H. A partial reduction of Drp1 improves cognitive behavior and enhances mitophagy, autophagy and dendritic spines in a transgenic Tau mouse model of alzheimer disease. Hum. Mol. Genet., 2022, 31(11), 1788-1805.
[http://dx.doi.org/10.1093/hmg/ddab360] [PMID: 34919689]
[66]
Xie, W.; Guo, D.; Li, J.; Yue, L.; Kang, Q.; Chen, G.; Zhou, T.; Wang, H.; Zhuang, K.; Leng, L.; Li, H.; Chen, Z.; Gao, W.; Zhang, J. CEND1 deficiency induces mitochondrial dysfunction and cognitive impairment in alzheimer’s disease. Cell Death Differ., 2022, 29(12), 2417-2428.
[http://dx.doi.org/10.1038/s41418-022-01027-7] [PMID: 35732922]
[67]
Xu, Q.; Bernardo, A.; Walker, D.; Kanegawa, T.; Mahley, R.W.; Huang, Y. Profile and regulation of apolipoprotein E (ApoE) expression in the CNS in mice with targeting of green fluorescent protein gene to the ApoE locus. J. Neurosci., 2006, 26(19), 4985-4994.
[http://dx.doi.org/10.1523/JNEUROSCI.5476-05.2006] [PMID: 16687490]
[68]
Yamazaki, Y.; Zhao, N.; Caulfield, T.R.; Liu, C.C.; Bu, G. Apolipoprotein E and Alzheimer disease: Pathobiology and targeting strategies. Nat. Rev. Neurol., 2019, 15(9), 501-518.
[http://dx.doi.org/10.1038/s41582-019-0228-7] [PMID: 31367008]
[69]
Farrer, L.A.; Cupples, L.A.; Haines, J.L.; Hyman, B.; Kukull, W.A.; Mayeux, R.; Myers, R.H.; Pericak-Vance, M.A.; Risch, N.; van Duijn, C.M. Effects of age, sex, and ethnicity on the association between apolipoprotein E genotype and alzheimer disease. A meta-analysis. JAMA, 1997, 278(16), 1349-1356.
[http://dx.doi.org/10.1001/jama.1997.03550160069041] [PMID: 9343467]
[70]
Jia, L.; Xu, H.; Chen, S.; Wang, X.; Yang, J.; Gong, M.; Wei, C.; Tang, Y.; Qu, Q.; Chu, L.; Shen, L.; Zhou, C.; Wang, Q.; Zhao, T.; Zhou, A.; Li, Y.; Li, F.; Li, Y.; Jin, H.; Qin, Q.; Jiao, H.; Li, Y.; Zhang, H.; Lyu, D.; Shi, Y.; Song, Y.; Jia, J. The APOE ε4 exerts differential effects on familial and other subtypes of alzheimer’s disease. Alzheimers Dement., 2020, 16(12), 1613-1623.
[http://dx.doi.org/10.1002/alz.12153] [PMID: 32881347]
[71]
Chang, S.; Ma, T.; Miranda, R.D.; Balestra, M.E.; Mahley, R.W.; Huang, Y. Lipid- and receptor-binding regions of apolipoprotein E4 fragments act in concert to cause mitochondrial dysfunction and neurotoxicity. Proc. Natl. Acad. Sci. USA, 2005, 102(51), 18694-18699.
[http://dx.doi.org/10.1073/pnas.0508254102] [PMID: 16344479]
[72]
Chen, H.K.; Ji, Z.S.; Dodson, S.E.; Miranda, R.D.; Rosenblum, C.I.; Reynolds, I.J.; Freedman, S.B.; Weisgraber, K.H.; Huang, Y.; Mahley, R.W. Apolipoprotein E4 domain interaction mediates detrimental effects on mitochondria and is a potential therapeutic target for Alzheimer disease. J. Biol. Chem., 2011, 286(7), 5215-5221.
[http://dx.doi.org/10.1074/jbc.M110.151084] [PMID: 21118811]
[73]
Simonovitch, S.; Schmukler, E.; Masliah, E.; Pinkas-Kramarski, R.; Michaelson, D.M. The effects of APOE4 on mitochondrial dynamics and proteins in vivo. J. Alzheimers Dis., 2019, 70(3), 861-875.
[http://dx.doi.org/10.3233/JAD-190074] [PMID: 31306119]
[74]
Schmukler, E.; Solomon, S.; Simonovitch, S.; Goldshmit, Y.; Wolfson, E.; Michaelson, D.M.; Pinkas-Kramarski, R. Altered mitochondrial dynamics and function in APOE4-expressing astrocytes. Cell Death Dis., 2020, 11(7), 578.
[http://dx.doi.org/10.1038/s41419-020-02776-4] [PMID: 32709881]
[75]
Blanchard, J.W.; Akay, L.A.; Davila-Velderrain, J.; von Maydell, D.; Mathys, H.; Davidson, S.M.; Effenberger, A.; Chen, C.Y.; Maner-Smith, K.; Hajjar, I.; Ortlund, E.A.; Bula, M.; Agbas, E.; Ng, A.; Jiang, X.; Kahn, M.; Blanco-Duque, C.; Lavoie, N.; Liu, L.; Reyes, R.; Lin, Y.T.; Ko, T.; R’Bibo, L.; Ralvenius, W.T.; Bennett, D.A.; Cam, H.P.; Kellis, M.; Tsai, L.H. APOE4 impairs myelination via cholesterol dysregulation in oligodendrocytes. Nature, 2022, 611(7937), 769-779.
[http://dx.doi.org/10.1038/s41586-022-05439-w] [PMID: 36385529]
[76]
Roca-Agujetas, V.; Barbero-Camps, E.; de Dios, C.; Podlesniy, P.; Abadin, X.; Morales, A.; Marí, M.; Trullàs, R.; Colell, A. Cholesterol alters mitophagy by impairing optineurin recruitment and lysosomal clearance in alzheimer’s disease. Mol. Neurodegener., 2021, 16(1), 15.
[http://dx.doi.org/10.1186/s13024-021-00435-6] [PMID: 33685483]
[77]
Yazaki, K.; Matsuno, Y.; Yoshida, K.; Sherpa, M.; Nakajima, M.; Matsuyama, M.; Kiwamoto, T.; Morishima, Y.; Ishii, Y.; Hizawa, N. ROS-Nrf2 pathway mediates the development of TGF-β1-induced epithelial-mesenchymal transition through the activation of Notch signaling. Eur. J. Cell Biol., 2021, 100(7-8), 151181.
[http://dx.doi.org/10.1016/j.ejcb.2021.151181] [PMID: 34763128]
[78]
George, M.; Tharakan, M.; Culberson, J.; Reddy, A.P.; Reddy, P.H. Role of Nrf2 in aging, alzheimer’s and other neurodegenerative diseases. Ageing Res. Rev., 2022, 82, 101756.
[http://dx.doi.org/10.1016/j.arr.2022.101756] [PMID: 36243357]
[79]
Liu, G.W.; Chen, W.M.; Qin, J.P.; Gu, H.Q.; Liu, Q. Advances in the relationship between Nrf 2 and tumor and brain diseases. Jianyan Yixue Yu Linchuang, 2022, 19(17), 2320-2322.
[80]
Osama, A.; Zhang, J.; Yao, J.; Yao, X.; Fang, J. Nrf2: A dark horse in alzheimer’s disease treatment. Ageing Res. Rev., 2020, 64, 101206.
[http://dx.doi.org/10.1016/j.arr.2020.101206] [PMID: 33144124]
[81]
Imai, S.; Armstrong, C.M.; Kaeberlein, M.; Guarente, L. Transcriptional silencing and longevity protein Sir2 is an NAD-dependent histone deacetylase. Nature, 2000, 403(6771), 795-800.
[http://dx.doi.org/10.1038/35001622] [PMID: 10693811]
[82]
Zhao, N.; Zhang, X.; Li, B.; Wang, J.; Zhang, C.; Xu, B. Treadmill exercise improves PINK1/parkin-mediated mitophagy activity against alzheimer’s disease pathologies by upregulated SIRT1-FOXO1/3 axis in APP/PS1 mice. Mol. Neurobiol., 2023, 60(1), 277-291.
[http://dx.doi.org/10.1007/s12035-022-03035-7] [PMID: 36261693]
[83]
Silva, D.F.; Esteves, A.R.; Oliveira, C.R.; Cardoso, S.M. Mitochondrial metabolism power SIRT2-dependent deficient traffic causing alzheimer’s-disease related pathology. Mol. Neurobiol., 2017, 54(6), 4021-4040.
[http://dx.doi.org/10.1007/s12035-016-9951-x] [PMID: 27311773]
[84]
Zhou, Z.D.; Tan, E.K. Oxidized nicotinamide adenine dinucleotide-dependent mitochondrial deacetylase sirtuin-3 as a potential therapeutic target of Parkinson’s disease. Ageing Res. Rev., 2020, 62, 101107.
[http://dx.doi.org/10.1016/j.arr.2020.101107] [PMID: 32535274]
[85]
Yang, W.X. Mitochondrial Sirt3 Expression is Decreased in APP/PS1 Double Transgenic Mouse Model of alzheimer’s; Chongqing Medical University, 2015.
[86]
Huang, J.; Zeng, X.L.; Zhang, Q.Y.; Mi, M.T. Resveratrol improves mitochondrial function via up-regulating Sirt 3 in induced steatotic HepG2 cells. J. Army Med. Univ., 2017, 39(6), 536-540.
[http://dx.doi.org/10.16016/j.1000-5404.201609164]
[87]
Huang, Y.; Yang, Q.Y.; Chen, T.; Chen, C.; Zhong, Q.; Zhang, Z.Z. Progress in mitophagy in alzheimer’s disease. Int. J. Psychiatry, 2018, 45(6), 971-973.
[http://dx.doi.org/10.13479/j.cnki.jip.2018.06.004]
[88]
Wang, J.L.; Zhang, X.L.; Wang, X.Y. SIRT3 regulates age-related disease via mitochondrial pathway: From pathogenesis to therapy. Chin. J. Cell. Biol., 2017, 39(10), 1349-1356.
[89]
Fu, J.; Wu, H. Structural mechanisms of NLRP3 inflammasome assembly and activation. Annu. Rev. Immunol., 2023, 41(1), 301-316.
[http://dx.doi.org/10.1146/annurev-immunol-081022-021207] [PMID: 36750315]
[90]
Latz, E.; Xiao, T.S.; Stutz, A. Activation and regulation of the inflammasomes. Nat. Rev. Immunol., 2013, 13(6), 397-411.
[http://dx.doi.org/10.1038/nri3452] [PMID: 23702978]
[91]
Das, S.; Mishra, M.K.; Ghosh, J.; Basu, A. Japanese Encephalitis Virus infection induces IL-18 and IL-1β in microglia and astrocytes: Correlation with in vitro cytokine responsiveness of glial cells and subsequent neuronal death. J. Neuroimmunol., 2008, 195(1-2), 60-72.
[http://dx.doi.org/10.1016/j.jneuroim.2008.01.009] [PMID: 18374991]
[92]
Hung, W.L.; Ho, C.T.; Pan, M.H. Targeting the NLRP3 inflammasome in neuroinflammation: Health promoting effects of dietary phytochemicals in neurological disorders. Mol. Nutr. Food Res., 2020, 64(4), 1900550.
[http://dx.doi.org/10.1002/mnfr.201900550] [PMID: 31675164]
[93]
Gao, Y.; Li, J.; Li, J.; Hu, C.; Zhang, L.; Yan, J.; Li, L.; Zhang, L. Tetrahydroxy stilbene glycoside alleviated inflammatory damage by mitophagy via AMPK related PINK1/Parkin signaling pathway. Biochem. Pharmacol., 2020, 177, 113997.
[http://dx.doi.org/10.1016/j.bcp.2020.113997] [PMID: 32353422]
[94]
Yu, J.; Nagasu, H.; Murakami, T.; Hoang, H.; Broderick, L.; Hoffman, H.M.; Horng, T. Inflammasome activation leads to Caspase-1–dependent mitochondrial damage and block of mitophagy. Proc. Natl. Acad. Sci. USA, 2014, 111(43), 15514-15519.
[http://dx.doi.org/10.1073/pnas.1414859111] [PMID: 25313054]
[95]
Yang, X.; Zhang, M.; Dai, Y.; Sun, Y.; Aman, Y.; Xu, Y.; Yu, P.; Zheng, Y.; Yang, J.; Zhu, X. Spermidine inhibits neurodegeneration and delays aging via the PINK1-PDR1-dependent mitophagy pathway in C. elegans. Aging, 2020, 12(17), 16852-16866.
[http://dx.doi.org/10.18632/aging.103578] [PMID: 32902411]
[96]
Pekar, T.; Bruckner, K.; Pauschenwein-Frantsich, S.; Gschaider, A.; Oppliger, M.; Willesberger, J.; Ungersbäck, P.; Wendzel, A.; Kremer, A.; Flak, W.; Wantke, F.; Jarisch, R. The positive effect of spermidine in older adults suffering from dementia. Wien. Klin. Wochenschr., 2021, 133(9-10), 484-491.
[http://dx.doi.org/10.1007/s00508-020-01758-y] [PMID: 33211152]
[97]
Pekar, T.; Wendzel, A.; Jarisch, R. The positive effect of spermidine in older adults suffering from dementia after 1 year. Wien. Klin. Wochenschr., 2024, 136(1-2), 64-66.
[http://dx.doi.org/10.1007/s00508-023-02226-z] [PMID: 37284840]
[98]
Zhang, R.; Lu, J.; Pei, G.; Huang, S. Galangin rescues alzheimer’s amyloid-β induced mitophagy and brain organoid growth impairment. Int. J. Mol. Sci., 2023, 24(4), 3398.
[http://dx.doi.org/10.3390/ijms24043398] [PMID: 36834819]
[99]
Wang, H.; Jiang, T.; Li, W.; Gao, N.; Zhang, T. Resveratrol attenuates oxidative damage through activating mitophagy in an in vitro model of alzheimer’s disease. Toxicol. Lett., 2018, 282, 100-108.
[http://dx.doi.org/10.1016/j.toxlet.2017.10.021] [PMID: 29097221]
[100]
Turner, R.S.; Thomas, R.G.; Craft, S.; van Dyck, C.H.; Mintzer, J.; Reynolds, B.A.; Brewer, J.B.; Rissman, R.A.; Raman, R.; Aisen, P.S.; Mintzer, J.; Reynolds, B.A.; Karlawish, J.; Galasko, D.; Heidebrink, J.; Aggarwal, N.; Graff-Radford, N.; Sano, M.; Petersen, R.; Bell, K.; Doody, R.; Smith, A.; Bernick, C.; Porteinsson, A.; Tariot, P.; Mulnard, R.; Lerner, A.; Schneider, L.; Burns, J.; Raskind, M.; Ferris, S.; Jicha, G.; Quiceno, M.; Obisesan, T.; Rosenberg, P.; Weintraub, D.; Kieburtz, K.; Miller, B.; Kryscio, R.; Alexopoulis, G. A randomized, double-blind, placebo-controlled trial of resveratrol for Alzheimer disease. Neurology, 2015, 85(16), 1383-1391.
[http://dx.doi.org/10.1212/WNL.0000000000002035] [PMID: 26362286]
[101]
Moussa, C.; Hebron, M.; Huang, X.; Ahn, J.; Rissman, R.A.; Aisen, P.S.; Turner, R.S. Resveratrol regulates neuro-inflammation and induces adaptive immunity in alzheimer’s disease. J. Neuroinflammation, 2017, 14(1), 1.
[http://dx.doi.org/10.1186/s12974-016-0779-0] [PMID: 28086917]
[102]
Ahmedy, O.A.; Abdelghany, T.M.; El-Shamarka, M.E.A.; Khattab, M.A.; El-Tanbouly, D.M. Apigenin attenuates LPS-induced neurotoxicity and cognitive impairment in mice via promoting mitochondrial fusion/mitophagy: role of SIRT3/PINK1/Parkin pathway. Psychopharmacology, 2022, 239(12), 3903-3917.
[http://dx.doi.org/10.1007/s00213-022-06262-x] [PMID: 36287214]
[103]
Lu, J.; Gu, L.; Li, Q.; Wu, N.; Li, H.; Zhang, X. Andrographolide emeliorates maltol aluminium-induced neurotoxicity via regulating p62-mediated Keap1-Nrf2 pathways in PC12 cells. Pharm. Biol., 2021, 59(1), 230-239.
[http://dx.doi.org/10.1080/13880209.2021.1883678] [PMID: 33632062]
[104]
Zhou, Y.; Luo, D.; Shi, J.; Yang, X.; Xu, W.; Gao, W.; Guo, Y.; Zhao, Q.; Xie, X.; He, Y.; Du, G.; Pang, X. Loganin alleviated cognitive impairment in 3×Tg-AD mice through promoting mitophagy mediated by optineurin. J. Ethnopharmacol., 2023, 312, 116455.
[http://dx.doi.org/10.1016/j.jep.2023.116455] [PMID: 37019163]
[105]
Wang, C.; Zou, Q.; Pu, Y.; Cai, Z.; Tang, Y. Berberine rescues d-ribose-induced alzheimer’s pathology via promoting mitophagy. Int. J. Mol. Sci., 2023, 24(6), 5896.
[http://dx.doi.org/10.3390/ijms24065896] [PMID: 36982968]
[106]
Yang, M.; Yu, W-J.; He, C-X.; Jin, Y-J.; Li, Z.; Li, P.; Deng, S-S.; Yi, Y-Q.; Cheng, S-W.; Song, Z-Y. Effect on danggui shaoyao powder on mitophagy in rat model of alzheimer’s disease based on PINK1-parkin pathway. Zhongguo Zhongyao Zazhi, 2023, 48(2), 534-541.
[http://dx.doi.org/10.19540/j.cnki.cjcmm.20220907.501] [PMID: 36725243]
[107]
Chai, G.; Wu, J.; Gong, J.; Zhou, J.; Jiang, Z.; Yi, H.; Gu, Y.; Huang, H.; Yao, Z.; Zhang, Y.; Zhao, P.; Nie, Y. Activation of β2-adrenergic receptor ameliorates amyloid-β-induced mitophagy defects and tau pathology in mice. Neuroscience, 2022, 505, 34-50.
[http://dx.doi.org/10.1016/j.neuroscience.2022.09.020] [PMID: 36208707]
[108]
Covarrubias, A.J.; Perrone, R.; Grozio, A.; Verdin, E. NAD+ metabolism and its roles in cellular processes during ageing. Nat. Rev. Mol. Cell Biol., 2021, 22(2), 119-141.
[http://dx.doi.org/10.1038/s41580-020-00313-x] [PMID: 33353981]
[109]
Mills, K.F.; Yoshida, S.; Stein, L.R.; Grozio, A.; Kubota, S.; Sasaki, Y.; Redpath, P.; Migaud, M.E.; Apte, R.S.; Uchida, K.; Yoshino, J.; Imai, S. Long-term administration of nicotinamide mononucleotide mitigates age-associated physiological decline in mice. Cell Metab., 2016, 24(6), 795-806.
[http://dx.doi.org/10.1016/j.cmet.2016.09.013] [PMID: 28068222]
[110]
Irie, J.; Inagaki, E.; Fujita, M.; Nakaya, H.; Mitsuishi, M.; Yamaguchi, S.; Yamashita, K.; Shigaki, S.; Ono, T.; Yukioka, H.; Okano, H.; Nabeshima, Y.; Imai, S.; Yasui, M.; Tsubota, K.; Itoh, H. Effect of oral administration of nicotinamide mononucleotide on clinical parameters and nicotinamide metabolite levels in healthy Japanese men. Endocr. J., 2020, 67(2), 153-160.
[http://dx.doi.org/10.1507/endocrj.EJ19-0313] [PMID: 31685720]
[111]
Hou, Y.; Wei, Y.; Lautrup, S.; Yang, B.; Wang, Y.; Cordonnier, S.; Mattson, M.P.; Croteau, D.L.; Bohr, V.A. NAD + supplementation reduces neuroinflammation and cell senescence in a transgenic mouse model of alzheimer’s disease via cGAS–STING. Proc. Natl. Acad. Sci. USA, 2021, 118(37), e2011226118.
[http://dx.doi.org/10.1073/pnas.2011226118] [PMID: 34497121]
[112]
Birkmayer, J.G. Coenzyme nicotinamide adenine dinucleotide: new therapeutic approach for improving dementia of the Alzheimer type. Ann. Clin. Lab. Sci., 1996, 26(1), 1-9.
[PMID: 8834355]
[113]
Cen, X.; Chen, Y.; Xu, X.; Wu, R.; He, F.; Zhao, Q.; Sun, Q.; Yi, C.; Wu, J.; Najafov, A.; Xia, H. Pharmacological targeting of MCL-1 promotes mitophagy and improves disease pathologies in an alzheimer’s disease mouse model. Nat. Commun., 2020, 11(1), 5731.
[http://dx.doi.org/10.1038/s41467-020-19547-6] [PMID: 33184293]
[114]
Fan, L. The protective mechanism of melatonin-promoting mitochondrial autophagy in regulating NLRP 3 inflammasome activity in AD; Shandong University, 2020.
[http://dx.doi.org/10.27272/d.cnki.gshdu.2020.000283]
[115]
Chen, C.; Yang, C.; Wang, J.; Huang, X.; Yu, H.; Li, S.; Li, S.; Zhang, Z.; Liu, J.; Yang, X.; Liu, G.P. Melatonin ameliorates cognitive deficits through improving mitophagy in a mouse model of alzheimer’s disease. J. Pineal Res., 2021, 71(4), e12774.
[http://dx.doi.org/10.1111/jpi.12774] [PMID: 34617321]
[116]
Sumsuzzman, D.M.; Choi, J.; Jin, Y.; Hong, Y. Neurocognitive effects of melatonin treatment in healthy adults and individuals with alzheimer’s disease and insomnia: A systematic review and meta-analysis of randomized controlled trials. Neurosci. Biobehav. Rev., 2021, 127, 459-473.
[http://dx.doi.org/10.1016/j.neubiorev.2021.04.034] [PMID: 33957167]
[117]
Bhansali, S.; Bhansali, A.; Dhawan, V. Metformin promotes mitophagy in mononuclear cells: A potential in vitro model for unraveling metformin’s mechanism of action. Ann. N. Y. Acad. Sci., 2020, 1463(1), 23-36.
[http://dx.doi.org/10.1111/nyas.14141] [PMID: 31225649]
[118]
De Marañón, A.M.; Díaz-Pozo, P.; Canet, F.; Díaz-Morales, N.; Abad-Jiménez, Z.; López-Domènech, S.; Vezza, T.; Apostolova, N.; Morillas, C.; Rocha, M.; Víctor, V.M. Metformin modulates mitochondrial function and mitophagy in peripheral blood mononuclear cells from type 2 diabetic patients. Redox Biol., 2022, 53, 102342.
[http://dx.doi.org/10.1016/j.redox.2022.102342] [PMID: 35605453]
[119]
Kazkayasi, I.; Telli, G.; Nemutlu, E.; Uma, S. Intranasal metformin treatment ameliorates cognitive functions via insulin signaling pathway in ICV-STZ-induced mice model of alzheimer’s disease. Life Sci., 2022, 299, 120538.
[http://dx.doi.org/10.1016/j.lfs.2022.120538] [PMID: 35395244]
[120]
Koenig, A.M.; Mechanic-Hamilton, D.; Xie, S.X.; Combs, M.F.; Cappola, A.R.; Xie, L.; Detre, J.A.; Wolk, D.A.; Arnold, S.E. Effects of the insulin sensitizer metformin in alzheimer disease. Alzheimer Dis. Assoc. Disord., 2017, 31(2), 107-113.
[http://dx.doi.org/10.1097/WAD.0000000000000202] [PMID: 28538088]
[121]
Zheng, B.; Su, B.; Ahmadi-Abhari, S.; Kapogiannis, D.; Tzoulaki, I.; Riboli, E.; Middleton, L. Dementia risk in patients with type 2 diabetes: Comparing metformin with no pharmacological treatment. Alzheimers Dement., 2023, 19(12), 5681-5689.
[http://dx.doi.org/10.1002/alz.13349] [PMID: 37395154]
[122]
Cho, S.Y.; Kim, E.W.; Park, S.J.; Phillips, B.U.; Jeong, J.; Kim, H.; Heath, C.J.; Kim, D.; Jang, Y.; López-Cruz, L.; Saksida, L.M.; Bussey, T.J.; Lee, D.Y.; Kim, E. Reconsidering repurposing: Long-term metformin treatment impairs cognition in alzheimer’s model mice. Transl. Psychiatry, 2024, 14(1), 34.
[http://dx.doi.org/10.1038/s41398-024-02755-9] [PMID: 38238285]
[123]
Wang, H.; Fu, J.; Xu, X.; Yang, Z.; Zhang, T. Rapamycin activates mitophagy and alleviates cognitive and synaptic plasticity deficits in a mouse model of alzheimer’s disease. J. Gerontol. A Biol. Sci. Med. Sci., 2021, 76(10), 1707-1713.
[http://dx.doi.org/10.1093/gerona/glab142] [PMID: 34003967]
[124]
Lonskaya, I.; Hebron, M.L.; Desforges, N.M.; Schachter, J.B.; Moussa, C.E.H. Nilotinib-induced autophagic changes increase endogenous parkin level and ubiquitination, leading to amyloid clearance. J. Mol. Med., 2014, 92(4), 373-386.
[http://dx.doi.org/10.1007/s00109-013-1112-3] [PMID: 24337465]
[125]
Turner, R.S.; Hebron, M.L.; Lawler, A.; Mundel, E.E.; Yusuf, N.; Starr, J.N.; Anjum, M.; Pagan, F.; Torres-Yaghi, Y.; Shi, W.; Mulki, S.; Ferrante, D.; Matar, S.; Liu, X.; Esposito, G.; Berkowitz, F.; Jiang, X.; Ahn, J.; Moussa, C. Nilotinib effects on safety, tolerability, and biomarkers in alzheimer’s disease. Ann. Neurol., 2020, 88(1), 183-194.
[http://dx.doi.org/10.1002/ana.25775] [PMID: 32468646]
[126]
Li, Z; Wang, X; Ren, L. Effects of “harmony between kidney and brain ” electroacupuncture for mitochondrial autophagy related proteins LC3-Ⅱand Bnip3 in the hippocampus of alzheimer’s diseases rats. Liaoning J Tradit Chin Med, 2019, 46(2), 407-409.
[http://dx.doi.org/10.13192/j.issn.1000-1719.2019.02.059]
[127]
Quan, Q.H. Effect of “mutual assistance of kidney and brain”Electroacupuncture therapy on the expression of PINK1 and PARKIN mitochondrial autophagy-related proteins of alzheimer’s Diseases Rats; Liaoning University of Traditional Chinese Medicine, 2019.
[http://dx.doi.org/10.27213/d.cnki.glnzc.2019.000136]
[128]
Liu, S.Y.; Li, Z.G.; Sun, R.Q.; Liu, Y.; Wang, S.; Wang, X. Effect of “TongduQishen” EA on the expression of HIF-1 α and BNIP 3 in the cerebral cortex of APP / PS1 double transgenic mice. J. of Clin. Acupunct. Moxibust., 2022, 38(12), 53-59.
[http://dx.doi.org/10.19917/j.cnki.1005-0779.022231]
[129]
Zhou, M.L. Experimental Study of Acupoint Catgut Embedding on Mitophagy of Hippocampal. Compound Aging Model Rats; Guangzhou University of Traditional Chinese Medicine, 2019.
[http://dx.doi.org/10.27044/d.cnki.ggzzu.2019.001333]
[130]
Zhang, Z.Y.; Kang, W.M.; Zhang, S.; Bo, H. High-intensity interval training-induced neuroprotection of hippocampus in APP / PS1 transgenic mice via upregulation of mitophagy. Chin. J. Rehabil. Med., 2020, 35(6), 670-675.
[131]
Zhong, G.; Long, H.; Zhou, T.; Liu, Y.; Zhao, J.; Han, J.; Yang, X.; Yu, Y.; Chen, F.; Shi, S. Blood-brain barrier Permeable nanoparticles for alzheimer’s disease treatment by selective mitophagy of microglia. Biomaterials, 2022, 288, 121690.
[http://dx.doi.org/10.1016/j.biomaterials.2022.121690] [PMID: 35965114]
[132]
Xu, F.; Wu, Y.; Yang, Q.; Cheng, Y.; Xu, J.; Zhang, Y.; Dai, H.; Wang, B.; Ma, Q.; Chen, Y.; Lin, F.; Wang, C. Engineered extracellular vesicles with SHP2 high expression promote mitophagy for alzheimer’s disease treatment. Adv. Mater., 2022, 34(49), 2207107.
[http://dx.doi.org/10.1002/adma.202207107] [PMID: 36193769]

© 2024 Bentham Science Publishers | Privacy Policy