Generic placeholder image

Current Chinese Science

Editor-in-Chief

ISSN (Print): 2210-2981
ISSN (Online): 2210-2914

Research Article Section: Optics

Effect of Capsule Thickness and Material Properties on the Central Optical Power of Natural Human Lens

Author(s): Reza Kakavand and Amin Komeili*

Volume 4, Issue 1, 2024

Published on: 06 October, 2023

Page: [47 - 57] Pages: 11

DOI: 10.2174/0122102981262107230921100027

Price: $65

Abstract

Background: A thin membrane capsule covers the eye lens and links the lens and the applied forces by the ciliary muscles. The capsule converts the tension of the concentrated zonules to distributed surface tractions over the cortex surface during the lens accommodation. The gradual changes of the capsule geometry and material properties with age and its important role in the design of intraocular lens implants were the motivation of extensive researches on describing the capsule biomechanical behavior.

Aims: The present work aimed to study the lens accommodation response to different capsule thicknesses and material properties at different ages.

Materials and Methods: A material and geometry parametric study was performed, drawing some guidelines on the choice of lens capsule thickness and biaxial/uniaxial material parameters and exploring the response sensitivity of the finite element model at different age groups.

Results: The 16-, 35- and 48-year-old lenses were considered for lens accommodation simulation. The sensitivity of lens accommodation was studied at each age group by considering constant thickness (cnst-t) and variable thickness (var-t) capsules and biaxial (Biax) and uniaxial (Uniax) material characteristics tests. The lens was stretched through zonules, and corresponding absolute changes in central optical power (COP) were measured.

Conclusion: After the stretch, the lens anterior and posterior curvatures increased, producing a change in COP. The Biax models underestimated the ΔCOP compared to the Uniax models. The 16-year lens model was more sensitive to material properties than thickness variation, while thickness variation was more relevant to the ΔCOP of the 35-year lens model. The 48-year model had the least sensitivity to capsule thickness and material property variations.

Keywords: Human lens capsule, accommodation, strain, finite element analysis, sensitivity analysis, biconvex.

Graphical Abstract
[1]
León, A.; Estrada, J.M.; Rosenfield, M. Age and the amplitude of accommodation measured using dynamic retinoscopy. Ophthalmic Physiol. Opt., 2016, 36(1), 5-12.
[http://dx.doi.org/10.1111/opo.12244] [PMID: 26353999]
[2]
Bassnett, S. Šikić H. The lens growth process. Prog. Retin. Eye Res., 2017, 60, 181-200.
[http://dx.doi.org/10.1016/j.preteyeres.2017.04.001] [PMID: 28411123]
[3]
Goldberg, D.B. Computer-animated model of accommodation and presbyopia. J. Cataract Refract. Surg., 2015, 41(2), 437-445.
[http://dx.doi.org/10.1016/j.jcrs.2014.07.028] [PMID: 25661140]
[4]
Fisher, R.F. Elastic constants of the human lens capsule. Physiol. J., 1969, 201(1), 1-19.
[http://dx.doi.org/10.1113/jphysiol.1969.sp008739]
[5]
Danielsen, C.C. Tensile mechanical and creep properties of Descemet’s membrane and lens capsule. Exp. Eye Res., 2004, 79(3), 343-350.
[http://dx.doi.org/10.1016/j.exer.2004.05.014] [PMID: 15336496]
[6]
Pedrigi, R.M.; David, G.; Dziezyc, J.; Humphrey, J.D. Regional mechanical properties and stress analysis of the human anterior lens capsule. Vision Res., 2007, 47(13), 1781-1789.
[http://dx.doi.org/10.1016/j.visres.2007.03.014] [PMID: 17467027]
[7]
Andreo, L.K.; Wilson, E.M.; Apple, D.J. Elastic properties and scanning electron microscopic appearance of manual continuous curvilinear capsulorhexis and vitrectorhexis in an animal model of pediatric cataract. J. Cataract Refract. Surg., 1999, 25(4), 534-539.
[http://dx.doi.org/10.1016/S0886-3350(99)80051-0] [PMID: 10198859]
[8]
Assia, E.I.; Apple, D.J.; Barden, A.; Tsai, J.C.; Castaneda, V.E.; Hoggatt, J.S. An experimental study comparing various anterior capsulectomy techniques. Arch. Ophthalmol., 1991, 109(5), 642-647.
[http://dx.doi.org/10.1001/archopht.1991.01080050056028] [PMID: 2025165]
[9]
Morgan, J.E.; Ellingham, R.B.; Young, R.D.; Trmal, G.J. The mechanical properties of the human lens capsule following capsulorhexis or radiofrequency diathermy capsulotomy. Arch. Ophthalmol., 1996, 114(9), 1110-1115.
[http://dx.doi.org/10.1001/archopht.1996.01100140312010] [PMID: 8790098]
[10]
Wood, M.G.; Schelonka, L.P. A porcine model predicts that a can-opener capsulotomy can be done safely in pediatric patients. J. AAPOS, 1999, 3(6), 356-362.
[http://dx.doi.org/10.1016/S1091-8531(99)70045-5] [PMID: 10613580]
[11]
Parel, J.M.; Ziebarth, N.; Denham, D.; Fernandez, V.; Manns, F.; Lamar, P.; Rosen, A.; Ho, A.; Erickson, P. Assessment of the strength of minicapsulorhexes. J. Cataract Refract. Surg., 2006, 32(8), 1366-1373.
[http://dx.doi.org/10.1016/j.jcrs.2006.04.007] [PMID: 16863977]
[12]
Krag, S.; Olsen, T.; Andreassen, T.T. Biomechanical characteristics of the human anterior lens capsule in relation to age. Invest. Ophthalmol. Vis. Sci., 1997, 38(2), 357-363.
[13]
Krag, S.; Andreassen, T.T. Mechanical properties of the human lens capsule. Prog. Retin. Eye Res., 2003, 22(6), 749-767.
[http://dx.doi.org/10.1016/S1350-9462(03)00063-6]
[14]
Krag, S.; Andreassen, T.T. Mechanical properties of the human posterior lens capsule. Invest. Ophthalmol. Vis. Sci., 2003, 44(2), 691-696.
[http://dx.doi.org/10.1167/iovs.02-0096]
[15]
Avetisov, K.S. Fеdorov, A.A.; Novikov, I.A. Light and scanning electron microscopy of anterior lens capsule following different capsulorhexis techniques. Vestn. Oftalmol., 2015, 131(6), 4-10.
[http://dx.doi.org/10.17116/oftalma201513164-10] [PMID: 26977720]
[16]
Krag, S.; Andreassen, T.T. Biomechanical measurements of the porcine lens capsule. Exp. Eye Res., 1996, 62(3), 253-260.
[http://dx.doi.org/10.1006/exer.1996.0030] [PMID: 8690034]
[17]
David, G.; Pedrigi, R.M.; Heistand, M.R.; Humphrey, J.D. Regional multiaxial mechanical properties of the porcine anterior lens capsule. J. Biomech. Eng., 2007, 129(1), 97-104.
[http://dx.doi.org/10.1115/1.2401188]
[18]
David, G.; Humphrey, J.D. Finite element model of stresses in the anterior lens capsule of the eye. Comput. Methods Biomech. Biomed. Engin., 2007, 10(3), 237-243.
[http://dx.doi.org/10.1080/10255840601154750] [PMID: 17558651]
[19]
Pedrigi, R.M.; Staff, E.; David, G.; Glenn, S.; Humphrey, J.D. Altered multiaxial mechanical properties of the porcine anterior lens capsule cultured in high glucose. J. Biomech. Eng., 2007, 129(1), 121-125.
[http://dx.doi.org/10.1115/1.2401192]
[20]
Heistand, M.R.; Pedrigi, R.M.; Dziezyc, J.; Humphrey, J.D. Redistribution of strain and curvature in the porcine anterior lens capsule following a continuous circular capsulorhexis. J. Biomech., 2006, 39(8), 1537-1542.
[http://dx.doi.org/10.1016/j.jbiomech.2005.04.019] [PMID: 16024027]
[21]
Heistand, M.R.; Pedrigi, R.M.; Delange, S.L.; Dziezyc, J.; Humphrey, J.D. Multiaxial mechanical behavior of the porcine anterior lens capsule. Biomech. Model. Mechanobiol., 2005, 4(2-3), 168-177.
[http://dx.doi.org/10.1007/s10237-005-0073-z] [PMID: 15973538]
[22]
Fisher, R.F.; Pettet, B.E. The postnatal growth of the capsule of the human crystalline lens. J. Anat., 1972, 112(Pt 2), 207-214.
[23]
Barraquer, R.I.; Michael, R.; Abreu, R.; Lamarca, J.; Tresserra, F. Human lens capsule thickness as a function of age and location along the sagittal lens perimeter. Invest. Ophthalmol. Vis. Sci., 2006, 47(5), 2053-2060.
[http://dx.doi.org/10.1167/iovs.05-1002] [PMID: 16639015]
[24]
Fincham, E.F. The mechanism of accommodation; G; Pulman & Sons, Limited, 1937.
[25]
Wang, K.; Venetsanos, D.; Wang, J.; Pierscionek, B.K. Gradient moduli lens models: how material properties and application of forces can affect deformation and distributions of stress. Sci. Rep., 2016, 6(1), 31171.
[http://dx.doi.org/10.1038/srep31171] [PMID: 27507665]
[26]
Wang, K.; Hoshino, M.; Uesugi, K.; Yagi, N.; Pierscionek, B.K. Contributions of shape and stiffness to accommodative loss in the ageing human lens: A finite element model assessment. J. Opt. Soc. Am. A Opt. Image Sci. Vis., 2019, 36(4), B116-B122.
[http://dx.doi.org/10.1364/JOSAA.36.00B116] [PMID: 31044989]
[27]
Wang, K.; Venetsanos, D.T.; Hoshino, M.; Uesugi, K.; Yagi, N.; Pierscionek, B.K. A modeling approach for investigating opto-mechanical relationships in the human eye lens. IEEE Trans. Biomed. Eng., 2020, 67(4), 999-1006.
[http://dx.doi.org/10.1109/TBME.2019.2927390] [PMID: 31395531]
[28]
Wilkes, R.P.; Reilly, M.A. A pre-tensioned finite element model of ocular accommodation and presbyopia. Int. J. Adv. Eng. Sci. Appl. Math., 2016, 8(1), 25-38.
[http://dx.doi.org/10.1007/s12572-015-0141-2]
[29]
Wang, K.; Pierscionek, B.K. Biomechanics of the human lens and accommodative system: Functional relevance to physiological states. Prog. Retin. Eye Res., 2018, 71, 114-131.
[PMID: 30439450]
[30]
Wang, K.; Venetsanos, D.T.; Wang, J.; Augousti, A.T.; Pierscionek, B.K. The importance of parameter choice in modelling dynamics of the eye lens. Sci. Rep., 2017, 7(1), 16688.
[http://dx.doi.org/10.1038/s41598-017-16854-9] [PMID: 29192148]
[31]
Fisher, R.F. The significance of the shape of the lens and capsular energy changes in accommodation. J. Physiol., 1969, 201(1), 21-47.
[http://dx.doi.org/10.1113/jphysiol.1969.sp008740] [PMID: 5775812]
[32]
Van de Sompel, D.; Kunkel, G.J.; Hersh, P.S.; Smits, A.J. Model of accommodation: Contributions of lens geometry and mechanical properties to the development of presbyopia. J. Cataract Refract. Surg., 2010, 36(11), 1960-1971.
[http://dx.doi.org/10.1016/j.jcrs.2010.09.001] [PMID: 21029906]
[33]
Burd, H.J.; Judge, S.J.; Cross, J.A. Numerical modelling of the accommodating lens. Vision Res., 2002, 42(18), 2235-2251.
[http://dx.doi.org/10.1016/S0042-6989(02)00094-9] [PMID: 12207982]
[34]
Hermans, E.A.; Dubbelman, M.; van der Heijde, G.L.; Heethaar, R.M. Estimating the external force acting on the human eye lens during accommodation by finite element modelling. Vision Res., 2006, 46(21), 3642-3650.
[http://dx.doi.org/10.1016/j.visres.2006.04.012] [PMID: 16750240]
[35]
David, G.; Pedrigi, R.M.; Humphrey, J.D. Accommodation of the human lens capsule using a finite element model based on nonlinear regionally anisotropic biomembranes. Comput. Methods Biomech. Biomed. Engin., 2017, 20(3), 302-307.
[http://dx.doi.org/10.1080/10255842.2016.1228907] [PMID: 27609339]
[36]
Fisher, R.F. Elastic constants of the human lens capsule. J. Physiol., 1969, 201(1), 1-19.
[http://dx.doi.org/10.1113/jphysiol.1969.sp008739] [PMID: 5773553]
[37]
Martin, H.; Guthoff, R.; Terwee, T.; Schmitz, K.P. Comparison of the accommodation theories of Coleman and of Helmholtz by finite element simulations. Vision Res., 2005, 45(22), 2910-2915.
[http://dx.doi.org/10.1016/j.visres.2005.05.030] [PMID: 16102799]
[38]
Belaidi, A.; Pierscionek, B.K. Modeling internal stress distributions in the human lens: Can opponent theories coexist? J. Vis., 2007, 7(11), 1.
[http://dx.doi.org/10.1167/7.11.1] [PMID: 17997656]
[39]
Burd, H.J. A structural constitutive model for the human lens capsule. Biomech. Model. Mechanobiol., 2009, 8(3), 217-231.
[http://dx.doi.org/10.1007/s10237-008-0130-5] [PMID: 18622755]
[40]
Burd, H.J.; Wilde, G.S. Finite element modelling of radial lentotomy cuts to improve the accommodation performance of the human lens. Graefes Arch. Clin. Exp. Ophthalmol., 2016, 254(4), 727-737.
[http://dx.doi.org/10.1007/s00417-016-3296-z] [PMID: 26916782]
[41]
Burd, H.J.; Regueiro, R.A. Finite element implementation of a multiscale model of the human lens capsule. Biomech. Model. Mechanobiol., 2015, 14(6), 1363-1378.
[http://dx.doi.org/10.1007/s10237-015-0680-2] [PMID: 25957261]
[42]
Burd, H.J.; Montenegro, G.A.; Panilla Cortés, L.; Barraquer, R.I.; Michael, R. Equatorial wrinkles in the human lens capsule. Exp. Eye Res., 2017, 159, 77-86.
[http://dx.doi.org/10.1016/j.exer.2017.02.004] [PMID: 28202286]
[43]
Wilde, G.S. Measurement of human lens stiffness for modelling presbyopia treatments; University of Oxford, 2011.
[44]
Burd, H.J.; Wilde, G.S.; Judge, S.J. An improved spinning lens test to determine the stiffness of the human lens. Exp. Eye Res., 2011, 92(1), 28-39.
[http://dx.doi.org/10.1016/j.exer.2010.10.010] [PMID: 21040722]
[45]
Wilde, G.S.; Burd, H.J.; Judge, S.J. Shear modulus data for the human lens determined from a spinning lens test. Exp. Eye Res., 2012, 97(1), 36-48.
[http://dx.doi.org/10.1016/j.exer.2012.01.011] [PMID: 22326492]
[46]
Urs, R.; Ho, A.; Manns, F.; Parel, J.M. Age-dependent Fourier model of the shape of the isolated ex vivo human crystalline lens. Vision Res., 2010, 50(11), 1041-1047.
[http://dx.doi.org/10.1016/j.visres.2010.03.012] [PMID: 20338192]
[47]
Croft, M.A.; Nork, T.M.; McDonald, J.P.; Katz, A.; Lütjen-Drecoll, E.; Kaufman, P.L. Accommodative movements of the vitreous membrane, choroid, and sclera in young and presbyopic human and nonhuman primate eyes. Invest. Ophthalmol. Vis. Sci., 2013, 54(7), 5049-5058.
[http://dx.doi.org/10.1167/iovs.12-10847] [PMID: 23745005]
[48]
Kasthurirangan, S.; Markwell, E.L.; Atchison, D.A.; Pope, J.M. MRI study of the changes in crystalline lens shape with accommodation and aging in humans. J. Vis., 2011, 11(3), 19-19.
[http://dx.doi.org/10.1167/11.3.19] [PMID: 21441300]
[49]
Martinez-Enriquez, E.; Pérez-Merino, P.; Velasco-Ocana, M.; Marcos, S. OCT-based full crystalline lens shape change during accommodation in vivo. Biomed. Opt. Express, 2017, 8(2), 918-933.
[http://dx.doi.org/10.1364/BOE.8.000918] [PMID: 28270993]
[50]
Bassnett, S.; Missey, H.; Vucemilo, I. Molecular architecture of the lens fiber cell basal membrane complex. J. Cell Sci., 1999, 112(13), 2155-2165.
[http://dx.doi.org/10.1242/jcs.112.13.2155] [PMID: 10362545]
[51]
Dubbelman, M.; Van der Heijde, G.L.; Weeber, H.A. Change in shape of the aging human crystalline lens with accommodation. Vision Res., 2005, 45(1), 117-132.
[http://dx.doi.org/10.1016/j.visres.2004.07.032] [PMID: 15571742]
[52]
Rosen, A.M.; Denham, D.B.; Fernandez, V.; Borja, D.; Ho, A.; Manns, F.; Parel, J.M.; Augusteyn, R.C. In vitro dimensions and curvatures of human lenses. Vision Res., 2006, 46(6-7), 1002-1009.
[http://dx.doi.org/10.1016/j.visres.2005.10.019] [PMID: 16321421]
[53]
Fisher, R.F. The elastic constants of the human lens. J. Physiol., 1971, 212(1), 147-180.
[http://dx.doi.org/10.1113/jphysiol.1971.sp009315] [PMID: 5101807]
[54]
Fincham, E.F. The function of the lens capsule in the accommodation of the eye. Trans. Opt. Soc., 1929, 30(3), 101-117.
[http://dx.doi.org/10.1088/1475-4878/30/3/301]
[55]
Pellegrino, A.; Burd, H.J.; Pinilla Cortés, L.; D’Antin, J.C.; Petrinic, N.; Barraquer, R.I.; Michael, R. Anterior lens capsule strains during simulated accommodation in porcine eyes. Exp. Eye Res., 2018, 168, 19-27.
[http://dx.doi.org/10.1016/j.exer.2017.12.008] [PMID: 29288023]
[56]
Sanchez, I.; Martin, R.; Ussa, F.; Fernandez-Bueno, I. The parameters of the porcine eyeball. Graefes Arch. Clin. Exp. Ophthalmol., 2011, 249(4), 475-482.
[http://dx.doi.org/10.1007/s00417-011-1617-9] [PMID: 21287191]
[57]
Wolffsohn, J.S.; Davies, L.N. Presbyopia: Effectiveness of correction strategies. Prog. Retin. Eye Res., 2019, 68, 124-143.
[http://dx.doi.org/10.1016/j.preteyeres.2018.09.004] [PMID: 30244049]
[58]
Tabernero, J.; Chirre, E.; Hervella, L.; Prieto, P.; Artal, P. The accommodative ciliary muscle function is preserved in older humans. Sci. Rep., 2016, 6(1), 25551.
[http://dx.doi.org/10.1038/srep25551] [PMID: 27151778]
[59]
Durr, G.M.; Ahmed, I.I.K. IOL Complications: Decentration, UGH syndrome, opacification and refractive surprises. Ophthalmology, 2020, 128(11), e186-e194.
[60]
Banitt, M.R.; Malta, J.B.; Mian, S.I.; Soong, K.H. Rupture of anterior lens capsule from blunt ocular injury. J. Cataract Refract. Surg., 2009, 35(5), 943-945.
[http://dx.doi.org/10.1016/j.jcrs.2008.11.066] [PMID: 19393898]
[61]
Yehezkeli, V.; Wong, J.X.H.; Assia, E.I. Late spontaneous posterior capsule rupture after hydrophilic intraocular lens implantation. J. Cataract Refract. Surg., 2021, 47(3), 311-315.
[http://dx.doi.org/10.1097/j.jcrs.0000000000000447] [PMID: 32991502]
[62]
Zabriskie, N.A.; Hwang, I.P.; Ramsey, J.F.; Crandall, A.S. Anterior lens capsule rupture caused by air bag trauma. Am. J. Ophthalmol., 1997, 123(6), 832-833.
[http://dx.doi.org/10.1016/S0002-9394(14)71133-X] [PMID: 9535628]
[63]
Kuszak, J.R.; Mazurkiewicz, M.; Jison, L.; Madurski, A.; Ngando, A.; Zoltoski, R.K. Quantitative analysis of animal model lens anatomy: Accommodative range is related to fiber structure and organization. Vet. Ophthalmol., 2006, 9(5), 266-280.
[http://dx.doi.org/10.1111/j.1463-5224.2006.00506.x] [PMID: 16939454]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy