Generic placeholder image

Current Chinese Science

Editor-in-Chief

ISSN (Print): 2210-2981
ISSN (Online): 2210-2914

Review Article Section: Biotechnology

Axillary Meristem Development in Plants

Author(s): Cui Zhang*, Liya Liu, Siying Guo and Benyao Duan

Volume 3, Issue 1, 2023

Published on: 13 October, 2022

Page: [32 - 41] Pages: 10

DOI: 10.2174/2210298102666220927100443

Price: $65

Abstract

The shoot apical meristem of seed plants gives rise to the above-ground parts of the plants during development, including leaves, stems, and lateral meristems. Among them, two types of meristems, axillary meristem and vascular cambium, support the main lateral growth. In this review, we will discuss the regulatory network of lateral growth, focusing on recent progress made mainly in Arabidopsis thaliana, tomato and maize, including the identification of genes and their roles in controlling lateral meristems. In addition, we will summarize the latest evidence about how meristem affects yield-related traits, and discuss the strategies for modulating meristem regulatory genes so as to increase crop yield in agriculture.

Keywords: Meristem, initiation, transcription factors, hormone, crop, yield.

Graphical Abstract
[1]
Sanchez, P.; Nehlin, L.; Greb, T. From thin to thick: Major transitions during stem development. Trends Plant Sci., 2012, 17(2), 113-121.
[http://dx.doi.org/10.1016/j.tplants.2011.11.004] [PMID: 22189413]
[2]
Long, J.; Barton, M.K. Initiation of axillary and floral meristems in Arabidopsis. Dev. Biol., 2000, 218(2), 341-353.
[http://dx.doi.org/10.1006/dbio.1999.9572] [PMID: 10656774]
[3]
Otsuga, D.; DeGuzman, B.; Prigge, M.J.; Drews, G.N.; Clark, S.E. REVOLUTA regulates meristem initiation at lateral positions. Plant J., 2001, 25(2), 223-236.
[http://dx.doi.org/10.1046/j.1365-313x.2001.00959.x] [PMID: 11169198]
[4]
Zhu, Y.; Wagner, D. Plant inflorescence architecture: The formation, activity, and fate of axillary meristems. Cold Spring Harb. Perspect. Biol., 2020, 12(1)a034652http://pubmed.ncbi.nlm.nih.gov/31308142/
[5]
McSteen, P.; Hake, S. barren inflorescence2 regulates axillary meristem development in the maize inflorescence. Development, 2001, 128(15), 2881-2891.
[http://dx.doi.org/10.1242/dev.128.15.2881] [PMID: 11532912]
[6]
Chuck, G.S.; Brown, P.J.; Meeley, R.; Hake, S. Maize SBP-box transcription factors unbranched2 and unbranched3 affect yield traits by regulating the rate of lateral primordia initiation. Proc. Natl. Acad. Sci. USA, 2014, 111(52), 18775-18780.
[http://dx.doi.org/10.1073/pnas.1407401112] [PMID: 25512525]
[7]
Wang, B.; Smith, S.M.; Li, J. Genetic regulation of shoot architecture. Annu. Rev. Plant Biol., 2018, 69(1), 437-468.
[http://dx.doi.org/10.1146/annurev-arplant-042817-040422] [PMID: 29553800]
[8]
Mathan, J.; Bhattacharya, J.; Ranjan, A. Enhancing crop yield by optimizing plant developmental features. Development, 2016, 143(18), 3283-3294.
[http://dx.doi.org/10.1242/dev.134072] [PMID: 27624833]
[9]
Cai, H.T.; Yu, L.J. A systems approach to understand shoot branching. Curr. Plant Biol., 2015, 3-4, 13-19.
[10]
Endrizzi, K.; Moussian, B.; Haecker, A.; Levin, J.Z.; Laux, T. The SHOOT MERISTEMLESS gene is required for maintenance of undifferentiated cells in Arabidopsis shoot and floral meristems and acts at a different regulatory level than the meristem genes WUSCHEL and ZWILLE. Plant J., 1996, 10(6), 967-979.
[http://dx.doi.org/10.1046/j.1365-313X.1996.10060967.x] [PMID: 9011081]
[11]
Wai, A.H.; An, G. Axillary meristem initiation and bud growth in rice. J. Plant Biol., 2017, 60(5), 440-451.
[http://dx.doi.org/10.1007/s12374-017-0088-x]
[12]
Xue, Z.; Liu, L.; Zhang, C. Regulation of shoot apical meristem and axillary meristem development in plants. Int. J. Mol. Sci., 2020, 21(8), 2917.
[http://dx.doi.org/10.3390/ijms21082917] [PMID: 32326368]
[13]
Doebley, J. The genetics of maize evolution. Annu. Rev. Genet., 2004, 38(1), 37-59.
[http://dx.doi.org/10.1146/annurev.genet.38.072902.092425] [PMID: 15568971]
[14]
Phillips, K.A.; Skirpan, A.L.; Kaplinsky, N.J.; McSteen, P. Developmental disaster1: A novel mutation causing defects during vegetative and inflorescence development in maize (Zea mays, Poaceae). Am. J. Bot., 2009, 96(2), 420-430.
[http://dx.doi.org/10.3732/ajb.0800268] [PMID: 21628197]
[15]
McSteen, P.; Laudencia, C.D.; Colasanti, J. A floret by any other name: Control of meristem identity in maize. Trends Plant Sci., 2000, 5(2), 61-66.
[http://dx.doi.org/10.1016/S1360-1385(99)01541-1] [PMID: 10664615]
[16]
McSteen, P.; Leyser, O. Shoot branching. Annu. Rev. Plant Biol., 2005, 56(1), 353-374.
[http://dx.doi.org/10.1146/annurev.arplant.56.032604.144122] [PMID: 15862100]
[17]
Studer, A.; Zhao, Q.; Ross, I.J.; Doebley, J. Identification of a functional transposon insertion in the maize domestication gene tb1. Nat. Genet., 2011, 43(11), 1160-1163.
[http://dx.doi.org/10.1038/ng.942] [PMID: 21946354]
[18]
Wu, Q.; Xu, F.; Jackson, D. All together now, a magical mystery tour of the maize shoot meristem. Curr. Opin. Plant Biol, 2018, 45(Pt A), 26-35.
[http://dx.doi.org/10.1016/j.pbi.2018.04.010] [PMID: 29778985]
[19]
Ritter, M.K.; Padilla, C.M.; Schmidt, R.J. The maize mutant barren stalk1 is defective in axillary meristem development. Am. J. Bot., 2002, 89(2), 203-210.
[http://dx.doi.org/10.3732/ajb.89.2.203] [PMID: 21669728]
[20]
Yao, H.; Skirpan, A.; Wardell, B.; Matthes, M.S.; Best, N.B.; McCubbin, T.; Durbak, A.; Smith, T.; Malcomber, S.; McSteen, P. The barren stalk2 gene is required for axillary meristem development in maize. Mol. Plant, 2019, 12(3), 374-389.
[http://dx.doi.org/10.1016/j.molp.2018.12.024] [PMID: 30690173]
[21]
Matthes, M.S.; Best, N.B.; Robil, J.M.; Malcomber, S.; Gallavotti, A.; McSteen, P. Auxin evodevo: Conservation and diversification of genes regulating auxin biosynthesis, transport, and signaling. Mol. Plant, 2019, 12(3), 298-320.
[http://dx.doi.org/10.1016/j.molp.2018.12.012] [PMID: 30590136]
[22]
Hibara, K.; Karim, M.R.; Takada, S.; Taoka, K.; Furutani, M.; Aida, M.; Tasaka, M. Arabidopsis CUP-SHAPED COTYLEDON3 regulates postembryonic shoot meristem and organ boundary formation. Plant Cell, 2006, 18(11), 2946-2957.
[http://dx.doi.org/10.1105/tpc.106.045716] [PMID: 17122068]
[23]
Müller, D.; Schmitz, G.; Theres, K. Blind homologous R2R3 Myb genes control the pattern of lateral meristem initiation in Arabidopsis. Plant Cell, 2006, 18(3), 586-597.
[http://dx.doi.org/10.1105/tpc.105.038745] [PMID: 16461581]
[24]
Lee, D.K.; Geisler, M.; Springer, P.S. LATERAL ORGAN FUSION1 and LATERAL ORGAN FUSION2 function in lateral organ separation and axillary meristem formation in Arabidopsis. Development, 2009, 136(14), 2423-2432.
[http://dx.doi.org/10.1242/dev.031971] [PMID: 19542355]
[25]
Wang, Y.; Li, J. Branching in rice. Curr. Opin. Plant Biol., 2011, 14(1), 94-99.
[http://dx.doi.org/10.1016/j.pbi.2010.11.002] [PMID: 21144796]
[26]
Shi, B.; Zhang, C.; Tian, C.; Wang, J.; Wang, Q.; Xu, T.; Xu, Y.; Ohno, C.; Sablowski, R.; Heisler, M.G.; Theres, K.; Wang, Y.; Jiao, Y. Two-step regulation of a meristematic cell population acting in shoot branching in Arabidopsis. PLoS Genet., 2016, 12(7)e1006168
[http://dx.doi.org/10.1371/journal.pgen.1006168] [PMID: 27398935]
[27]
Wang, J.; Tian, C.; Zhang, C.; Shi, B.; Cao, X.; Zhang, T.Q.; Zhao, Z.; Wang, J.W.; Jiao, Y. Cytokinin signaling activates WUSCHEL expression during axillary meristem initiation. Plant Cell, 2017, 29(6), 1373-1387.
[http://dx.doi.org/10.1105/tpc.16.00579] [PMID: 28576845]
[28]
Zhang, C.; Wang, J.; Wenkel, S.; Chandler, J.W.; Werr, W.; Jiao, Y. Spatiotemporal control of axillary meristem formation by interacting transcriptional regulators. Development, 2018, 145(24) dev.158352.
[http://dx.doi.org/10.1242/dev.158352] [PMID: 30446629]
[29]
Lunde, C.; Hake, S. The interaction of knotted1 and thick tassel dwarf1 in vegetative and reproductive meristems of maize. Genetics, 2009, 181(4), 1693-1697.
[http://dx.doi.org/10.1534/genetics.108.098350] [PMID: 19153258]
[30]
Yasui, Y.; Tsukamoto, S.; Sugaya, T.; Nishihama, R.; Wang, Q.; Kato, H.; Yamato, K.T.; Fukaki, H.; Mimura, T.; Kubo, H.; Theres, K.; Kohchi, T.; Ishizaki, K. GEMMA CUP-ASSOCIATED MYB1, an ortholog of axillary meristem regulators, is essential in vegetative reproduction in Marchantia polymorpha. Curr. Biol., 2019, 29(23), 3987-3995.e5.
[http://dx.doi.org/10.1016/j.cub.2019.10.004] [PMID: 31708390]
[31]
Stirnberg, P.; Chatfield, S.P.; Leyser, H.M.O. AXR1 acts after lateral bud formation to inhibit lateral bud growth in Arabidopsis. Plant Physiol., 1999, 121(3), 839-847.
[http://dx.doi.org/10.1104/pp.121.3.839] [PMID: 10557232]
[32]
Stirnberg, P.; Van De Sande, K.; Leyser, H.M.O. MAX1 and MAX2 control shoot lateral branching in Arabidopsis. Development, 2002, 129(5), 1131-1141.
[http://dx.doi.org/10.1242/dev.129.5.1131] [PMID: 11874909]
[33]
Balkunde, R.; Kitagawa, M.; Xu, X.M.; Wang, J.; Jackson, D. SHOOT MERISTEMLESS trafficking controls axillary meristem formation, meristem size and organ boundaries in Arabidopsis. Plant J., 2017, 90(3), 435-446.
[http://dx.doi.org/10.1111/tpj.13504] [PMID: 28161901]
[34]
Greb, T.; Clarenz, O.; Schäfer, E.; Müller, D.; Herrero, R.; Schmitz, G.; Theres, K. Molecular analysis of the LATERAL SUPPRESSOR gene in Arabidopsis reveals a conserved control mechanism for axillary meristem formation. Genes Dev., 2003, 17(9), 1175-1187.
[http://dx.doi.org/10.1101/gad.260703] [PMID: 12730136]
[35]
Cao, X.; Jiao, Y. Control of cell fate during axillary meristem initiation. Cell. Mol. Life Sci., 2020, 77(12), 2343-2354.
[http://dx.doi.org/10.1007/s00018-019-03407-8] [PMID: 31807816]
[36]
Cao, X.; Wang, J.; Xiong, Y.; Yang, H.; Yang, M.; Ye, P.; Bencivenga, S.; Sablowski, R.; Jiao, Y. A Self-activation loop maintains meristematic cell fate for branching. Curr. Biol., 2020, 30(10), 1893-1904.e4.
[http://dx.doi.org/10.1016/j.cub.2020.03.031] [PMID: 32243852]
[37]
Guo, Y.; Tian, C.; Jiao, Y.; Wang, Y. Multifaceted functions of auxin in vegetative axillary meristem initiation. J. Genet. Genomics, 2020, 47(9), 591-594.
[38]
Xin, W.; Wang, Z.; Liang, Y.; Wang, Y.; Hu, Y. Dynamic expression reveals a two-step patterning of WUS and CLV3 during axillary shoot meristem formation in Arabidopsis. J. Plant Physiol., 2017, 214, 1-6.
[http://dx.doi.org/10.1016/j.jplph.2017.03.017] [PMID: 28399422]
[39]
Raman, S.; Greb, T.; Peaucelle, A.; Blein, T.; Laufs, P.; Theres, K. Interplay of miR164, CUP-SHAPED COTYLEDON genes and LATERAL SUPPRESSOR controls axillary meristem formation in Arabidopsis thaliana. Plant J., 2008, 55(1), 65-76.
[http://dx.doi.org/10.1111/j.1365-313X.2008.03483.x] [PMID: 18346190]
[40]
Li, Yu. Xia, Tian.; Gao, Fan.; Li, Y-H. Control of plant branching by the CUC2/CUC3-DA1-UBP15 regulatory module. Plant Cell, 2020, 32(6), 1919-1932.
[41]
Strable, J. Activate, breakdown, branch out: CUC2/3-DA1-UBP15 controls axillary meristem initiation. Plant Cell, 2020, 32(6), 1782-1783.
[http://dx.doi.org/10.1105/tpc.20.00184] [PMID: 32245752]
[42]
Yang, M.; Jiao, Y. Regulation of axillary meristem initiation by transcription factors and plant hormones. Front. Plant Sci., 2016, 7, 183.
[http://dx.doi.org/10.3389/fpls.2016.00183] [PMID: 26925087]
[43]
Keller, T.; Abbott, J.; Moritz, T.; Doerner, P. Arabidopsis REGULATOR OF AXILLARY MERISTEMS1 controls a leaf axil stem cell niche and modulates vegetative development. Plant Cell, 2006, 18(3), 598-611.
[http://dx.doi.org/10.1105/tpc.105.038588] [PMID: 16473968]
[44]
Yang, F.; Wang, Q.; Schmitz, G.; Müller, D.; Theres, K. The bHLH protein ROX acts in concert with RAX1 and LAS to modulate axillary meristem formation in Arabidopsis. Plant J., 2012, 71(1), 61-70.
[http://dx.doi.org/10.1111/j.1365-313X.2012.04970.x] [PMID: 22372440]
[45]
Zhang, C.; Fan, L.; Le, B.H.; Ye, P.; Mo, B.; Chen, X. Regulation of ARGONAUTE10 expression enables temporal and spatial precision in axillary meristem initiation in Arabidopsis. Dev. Cell, 2020, 55(5), 603-616.e5.
[http://dx.doi.org/10.1016/j.devcel.2020.10.019]
[46]
Wang, Y.; Jiao, Y. Auxin and above-ground meristems. J. Exp. Bot., 2018, 69(2), 147-154.
[http://dx.doi.org/10.1093/jxb/erx299] [PMID: 28992121]
[47]
Fang, Z.; Ji, Y.; Hu, J.; Guo, R.; Sun, S.; Wang, X. Strigolactones and brassinosteroids antagonistically regulate the stability of the D53-OsBZR1 complex to determine FC1expression in rice tillering. Mol. Plant, 2020, 13(4), 586-597.
[http://dx.doi.org/10.1016/j.molp.2019.12.005] [PMID: 31837469]
[48]
Hu, J.; Ji, Y.; Hu, X.; Sun, S.; Wang, X. BES1 Functions as the co-regulator of D53-like SMXLs to inhibit BRC1 expression in strigolactone-regulated shoot branching in Arabidopsis. Plant Commun., 2020, 1(3)100014
[http://dx.doi.org/10.1016/j.xplc.2019.100014] [PMID: 33404550]
[49]
Leyser, O. The fall and rise of apical dominance. Curr. Opin. Genet. Dev., 2005, 15(4), 468-471.
[http://dx.doi.org/10.1016/j.gde.2005.06.010] [PMID: 15964756]
[50]
Teichmann, T.; Muhr, M. Shaping plant architecture. Front. Plant Sci., 2015, 6, 233.
[http://dx.doi.org/10.3389/fpls.2015.00233] [PMID: 25914710]
[51]
Thimann, K.V.; Skoog, F. Studies on the growth hormone of plants: III. the inhibiting action of the growth substance on bud development. Proc. Natl. Acad. Sci. USA, 1933, 19(7), 714-716.
[http://dx.doi.org/10.1073/pnas.19.7.714] [PMID: 16577553]
[52]
Cheng, Y.; Dai, X.; Zhao, Y. Auxin synthesized by the YUCCA flavin monooxygenases is essential for embryogenesis and leaf formation in Arabidopsis. Plant Cell, 2007, 19(8), 2430-2439.
[http://dx.doi.org/10.1105/tpc.107.053009] [PMID: 17704214]
[53]
Shi, B.; Guo, X.; Wang, Y.; Xiong, Y.; Wang, J.; Hayashi, K.; Lei, J.; Zhang, L.; Jiao, Y. Feedback from lateral organs controls shoot apical meristem growth by modulating auxin transport. Dev. Cell, 2018, 44(2), 204-216.e6.
[http://dx.doi.org/10.1016/j.devcel.2017.12.021] [PMID: 29401419]
[54]
Kharshiing, E.V.; Kumar, G.P.; Sharma, R. PIN it on auxin. Plant Signal. Behav., 2010, 5(11), 1379-1383.
[http://dx.doi.org/10.4161/psb.5.11.13035] [PMID: 20980815]
[55]
Wang, Y.; Wang, J.; Shi, B.; Yu, T.; Qi, J.; Meyerowitz, E.M.; Jiao, Y. The stem cell niche in leaf axils is established by auxin and cytokinin in Arabidopsis. Plant Cell, 2014, 26(5), 2055-2067.
[http://dx.doi.org/10.1105/tpc.114.123083] [PMID: 24850849]
[56]
Wang, Q.; Kohlen, W.; Rossmann, S.; Vernoux, T.; Theres, K. Auxin depletion from the leaf axil conditions competence for axillary meristem formation in Arabidopsis and tomato. Plant Cell, 2014, 26(5), 2068-2079.
[http://dx.doi.org/10.1105/tpc.114.123059] [PMID: 24850851]
[57]
Sarojam, R.; Sappl, P.G.; Goldshmidt, A.; Efroni, I.; Floyd, S.K.; Eshed, Y.; Bowman, J.L. Differentiating Arabidopsis shoots from leaves by combined YABBY activities. Plant Cell, 2010, 22(7), 2113-2130.
[http://dx.doi.org/10.1105/tpc.110.075853] [PMID: 20628155]
[58]
Waldie, T.; Leyser, O. Cytokinin targets auxin transport to promote shoot branching. Plant Physiol., 2018, 177(2), 803-818.
[http://dx.doi.org/10.1104/pp.17.01691] [PMID: 29717021]
[59]
Jiang, K.; Feldman, L.J. Regulation of root apical meristem development. Annu. Rev. Cell Dev. Biol., 2005, 21(1), 485-509.
[http://dx.doi.org/10.1146/annurev.cellbio.21.122303.114753] [PMID: 16212504]
[60]
Miwa, H.; Kinoshita, A.; Fukuda, H.; Sawa, S. Plant meristems: CLAVATA3/ESR-related signaling in the shoot apical meristem and the root apical meristem. J. Plant Res., 2009, 122(1), 31-39.
[http://dx.doi.org/10.1007/s10265-008-0207-3] [PMID: 19104754]
[61]
Su, Y.H.; Liu, Y.B.; Zhang, X.S. Auxin-cytokinin interaction regulates meristem development. Mol. Plant, 2011, 4(4), 616-625.
[http://dx.doi.org/10.1093/mp/ssr007] [PMID: 21357646]
[62]
Kong, X.; Lu, S.; Tian, H.; Ding, Z. WOX5 is shining in the root stem cell niche. Trends Plant Sci., 2015, 20(10), 601-603.
[http://dx.doi.org/10.1016/j.tplants.2015.08.009] [PMID: 26440429]
[63]
Arite, T.; Kameoka, H.; Kyozuka, J. Strigolactone positively controls crown root elongation in rice. J. Plant Growth Regul., 2012, 31(2), 165-172.
[http://dx.doi.org/10.1007/s00344-011-9228-6]
[64]
Sun, H.; Tao, J.; Liu, S.; Huang, S.; Chen, S.; Xie, X.; Yoneyama, K.; Zhang, Y.; Xu, G. Strigolactones are involved in phosphate- and nitrate-deficiency-induced root development and auxin transport in rice. J. Exp. Bot., 2014, 65(22), 6735-6746.
[http://dx.doi.org/10.1093/jxb/eru029] [PMID: 24596173]
[65]
Kohlen, W.; Charnikhova, T.; Liu, Q.; Bours, R.; Domagalska, M.A.; Beguerie, S.; Verstappen, F.; Leyser, O.; Bouwmeester, H.; Ruyter, S.C. Strigolactones are transported through the xylem and play a key role in shoot architectural response to phosphate deficiency in nonarbuscular mycorrhizal host Arabidopsis. Plant Physiol., 2011, 155(2), 974-987.
[http://dx.doi.org/10.1104/pp.110.164640] [PMID: 21119045]
[66]
Doebley, J.; Stec, A.; Hubbard, L. The evolution of apical dominance in maize. Nature, 1997, 386(6624), 485-488.
[http://dx.doi.org/10.1038/386485a0] [PMID: 9087405]
[67]
Crawford, S.; Shinohara, N.; Sieberer, T.; Williamson, L.; George, G.; Hepworth, J.; Müller, D.; Domagalska, M.A.; Leyser, O. Strigolactones enhance competition between shoot branches by dampening auxin transport. Development, 2010, 137(17), 2905-2913.
[http://dx.doi.org/10.1242/dev.051987] [PMID: 20667910]
[68]
Shinohara, N.; Taylor, C.; Leyser, O. Strigolactone can promote or inhibit shoot branching by triggering rapid depletion of the auxin efflux protein PIN1 from the plasma membrane. PLoS Biol., 2013, 11(1)e1001474
[http://dx.doi.org/10.1371/journal.pbio.1001474] [PMID: 23382651]
[69]
Seale, M.; Bennett, T.; Leyser, O. BRC1 expression regulates bud activation potential but is not necessary or sufficient for bud growth inhibition in Arabidopsis. Development, 2017, 144(9), 1661-1673.
[PMID: 28289131]
[70]
Minakuchi, K.; Kameoka, H.; Yasuno, N.; Umehara, M.; Luo, L.; Kobayashi, K.; Hanada, A.; Ueno, K.; Asami, T.; Yamaguchi, S.; Kyozuka, J. FINE CULM1 (FC1) works downstream of strigolactones to inhibit the outgrowth of axillary buds in rice. Plant Cell Physiol., 2010, 51(7), 1127-1135.
[http://dx.doi.org/10.1093/pcp/pcq083] [PMID: 20547591]
[71]
Irish, E.E. Experimental analysis of tassel development in the maize mutant tassel seed 6. Plant Physiol., 1997, 114(3), 817-825.
[http://dx.doi.org/10.1104/pp.114.3.817] [PMID: 12223744]
[72]
Xu, C.; Liberatore, K.L.; MacAlister, C.A.; Huang, Z.; Chu, Y.H.; Jiang, K.; Brooks, C.; Ogawa, O.M.; Xiong, G.; Pauly, M.; Van Eck, J.; Matsubayashi, Y.; Van Der Knaap, E.; Lippman, Z.B. A cascade of arabinosyltransferases controls shoot meristem size in tomato. Nat. Genet., 2015, 47(7), 784-792.
[http://dx.doi.org/10.1038/ng.3309] [PMID: 26005869]
[73]
Liu, L.; Du, Y.; Shen, X.; Li, M.; Sun, W.; Huang, J.; Liu, Z.; Tao, Y.; Zheng, Y.; Yan, J.; Zhang, Z. KRN4 controls quantitative variation in maize kernel row number. PLoS Genet., 2015, 11(11)e1005670
[http://dx.doi.org/10.1371/journal.pgen.1005670] [PMID: 26575831]
[74]
Yuste, L.F.J.; Fernández, L.A.; Pineda, B.; Bretones, S.; Ortíz, A.A.; García, S.B.; Müller, N.A.; Angosto, T.; Capel, J.; Moreno, V.; Jiménez, G.J.M.; Lozano, R. ENO regulates tomato fruit size through the floral meristem development network. Proc. Natl. Acad. Sci. USA, 2020, 117(14), 8187-8195.
[http://dx.doi.org/10.1073/pnas.1913688117] [PMID: 32179669]
[75]
Doebley, J.F.; Gaut, B.S.; Smith, B.D. The molecular genetics of crop domestication. Cell, 2006, 127(7), 1309-1321.
[http://dx.doi.org/10.1016/j.cell.2006.12.006] [PMID: 17190597]
[76]
Clark, S.E.; Williams, R.W.; Meyerowitz, E.M. The CLAVATA1 gene encodes a putative receptor kinase that controls shoot and floral meristem size in Arabidopsis. Cell, 1997, 89(4), 575-585.
[http://dx.doi.org/10.1016/S0092-8674(00)80239-1] [PMID: 9160749]
[77]
Fletcher, J.C.; Brand, U.; Running, M.P.; Simon, R.; Meyerowitz, E.M. Signaling of cell fate decisions by CLAVATA3 in Arabidopsis shoot meristems. Science, 1999, 283(5409), 1911-1914.
[http://dx.doi.org/10.1126/science.283.5409.1911] [PMID: 10082464]
[78]
Taguchi, S.F.; Yuan, Z.; Hake, S.; Jackson, D. The fasciated ear2 gene encodes a leucine-rich repeat receptor-like protein that regulates shoot meristem proliferation in maize. Genes Dev., 2001, 15(20), 2755-2766.
[http://dx.doi.org/10.1101/gad.208501] [PMID: 11641280]
[79]
Bommert, P.; Nagasawa, N.S.; Jackson, D. Quantitative variation in maize kernel row number is controlled by the FASCIATED EAR2 locus. Nat. Genet., 2013, 45(3), 334-337.
[http://dx.doi.org/10.1038/ng.2534] [PMID: 23377180]
[80]
Je, B.I.; Gruel, J.; Lee, Y.K.; Bommert, P.; Arevalo, E.D.; Eveland, A.L.; Wu, Q.; Goldshmidt, A.; Meeley, R.; Bartlett, M.; Komatsu, M.; Sakai, H.; Jönsson, H.; Jackson, D. Signaling from maize organ primordia via FASCIATED EAR3 regulates stem cell proliferation and yield traits. Nat. Genet., 2016, 48(7), 785-791.
[http://dx.doi.org/10.1038/ng.3567] [PMID: 27182966]
[81]
Liu, L.; Gallagher, J.; Arevalo, E.D.; Chen, R.; Skopelitis, T.; Wu, Q.; Bartlett, M.; Jackson, D. Enhancing grain-yield-related traits by CRISPR–Cas9 promoter editing of maize CLE genes. Nat. Plants, 2021, 7(3), 287-294.
[http://dx.doi.org/10.1038/s41477-021-00858-5] [PMID: 33619356]
[82]
Bommert, P.; Lunde, C.; Nardmann, J.; Vollbrecht, E.; Running, M.; Jackson, D.; Hake, S.; Werr, W. Thick tassel dwarf1 encodes a putative maize ortholog of the Arabidopsis CLAVATA1 leucine-rich repeat receptor-like kinase. Development, 2005, 132(6), 1235-1245.
[http://dx.doi.org/10.1242/dev.01671] [PMID: 15716347]
[83]
Wu, Q.; Xu, F.; Liu, L.; Char, S.N.; Ding, Y.; Je, B.I.; Schmelz, E.; Yang, B.; Jackson, D. The maize heterotrimeric G protein β subunit controls shoot meristem development and immune responses. Proc. Natl. Acad. Sci. USA, 2020, 117(3), 1799-1805.
[http://dx.doi.org/10.1073/pnas.1917577116] [PMID: 31852823]
[84]
Muños, S.; Ranc, N.; Botton, E.; Bérard, A.; Rolland, S.; Duffé, P.; Carretero, Y.; Le Paslier, M.C.; Delalande, C.; Bouzayen, M.; Brunel, D.; Causse, M. Increase in tomato locule number is controlled by two single-nucleotide polymorphisms located near WUSCHEL. Plant Physiol., 2011, 156(4), 2244-2254.
[http://dx.doi.org/10.1104/pp.111.173997] [PMID: 21673133]
[85]
Fernández, L.A.; Yuste, L.F.J.; Pérez, M.F.; Pineda, B.; Moreno, V.; Lozano, R.; Angosto, T. Mutation at the tomato EXCESSIVE NUMBER OF FLORAL ORGANS (ENO) locus impairs floral meristem development, thus promoting an increased number of floral organs and fruit size. Plant Sci., 2015, 232, 41-48.
[http://dx.doi.org/10.1016/j.plantsci.2014.12.007] [PMID: 25617322]
[86]
Satterlee, J.W.; Strable, J.; Scanlon, M.J. Plant stem-cell organization and differentiation at single-cell resolution. Proc. Natl. Acad. Sci. USA, 2020, 117(52), 33689-33699.
[http://dx.doi.org/10.1073/pnas.2018788117] [PMID: 33318187]
[87]
Xu, X.; Crow, M.; Rice, B.R.; Li, F.; Harris, B.; Liu, L.; Demesa, A.E.; Lu, Z.; Wang, L.; Fox, N.; Wang, X.; Drenkow, J.; Luo, A.; Char, S.N.; Yang, B.; Sylvester, A.W.; Gingeras, T.R.; Schmitz, R.J.; Ware, D.; Lipka, A.E.; Gillis, J.; Jackson, D. Single-cell RNA sequencing of developing maize ears facilitates functional analysis and trait candidate gene discovery. Dev. Cell, 2021, 56(4), 557-568.e6.
[http://dx.doi.org/10.1016/j.devcel.2020.12.015] [PMID: 33400914]
[88]
Ma, X.; Denyer, T.; Javelle, M.; Feller, A.; Timmermans, M.C.P. Genome-wide analysis of plant miRNA action clarifies levels of regulatory dynamics across developmental contexts. Genome Res., 2021, 31(5), 811-822.
[http://dx.doi.org/10.1101/gr.270918.120] [PMID: 33863807]
[89]
Rick, C.M. Genetic and systematic studies on sccessions of lycospersicon from the Galapagos Islands. Am. J. Bot., 1956, 43(9), 687-696.
[http://dx.doi.org/10.1002/j.1537-2197.1956.tb14433.x]
[90]
Zahara, M.B.; Scheuerman, R.W. Hand-harvesting jointless vs. jointed-stem tomatoes. Arabidopsis, 1988, 14, 1.
[91]
Soyk, S.; Lemmon, Z.H.; Oved, M.; Fisher, J.; Liberatore, K.L.; Park, S.J.; Goren, A.; Jiang, K.; Ramos, A.; Van Der Knaap, E.; Van Eck, J.; Zamir, D.; Eshed, Y.; Lippman, Z.B. Bypassing negative epistasis on yield in tomato imposed by a domestication gene. Cell, 2017, 169(6), 1142-1155.e12.
[http://dx.doi.org/10.1016/j.cell.2017.04.032] [PMID: 28528644]
[92]
Mao, L.; Begum, D.; Chuang, H.; Budiman, M.A.; Szymkowiak, E.J.; Irish, E.E.; Wing, R.A. JOINTLESS is a MADS-box gene controlling tomato flower abscissionzone development. Nature, 2000, 406(6798), 910-913.
[http://dx.doi.org/10.1038/35022611] [PMID: 10972295]
[93]
Liu, D.; Wang, D.; Qin, Z.; Zhang, D.; Yin, L.; Wu, L.; Colasanti, J.; Li, A.; Mao, L. The SEPALLATA MADS-box protein SLMBP21 forms protein complexes with JOINTLESS and MACROCALYX as a transcription activator for development of the tomato flower abscission zone. Plant J., 2014, 77(2), 284-296.
[http://dx.doi.org/10.1111/tpj.12387] [PMID: 24274099]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy